Project Documentation

Abstract

High-rise dormitory in Roosevelt Island, NY USA

Data of building					
Year of construction	2017	Space heating	12		
U-value external wall	0.22 W/(m²K)		kWh/(m²a)		
U-value 1 st floor slab	1.613 W/(m ² K)	Primary Energy Renewable (PER)	0 kWh/(m²a)		
U-value roof	0.11 W/(m²K)	Generation of renewable energy	0 kWh/(m²a)		
U-value window	1.35 W/(m²K)	Non-renewable Primary Energy (PE)	119 kWh/(m²a)		
Heat recovery	69 %	Pressure test n ₅₀	0.1 h-1		
Special features	galvanized steel framing and custom prefabricated wall panels				

Brief Description

The House at Cornell Tech is located on the new Cornell Tech campus located on Roosevelt Island which opened for the 2017-2018 academic year in August 2017. Towering at 26 stories high with 352 units that can house about 530 graduate students, faculty, and staff. It is the tallest building built to the Passive House standard in the world.

Being the first development and design team to pioneer designing and building the tallest high-rise Passive House residential building was a challenging. When the team began designing this building over four years ago there were few products on the market that met Passive House standards and fewer contractors, sub-contractors and consultants that knew how to build a Passive House building.

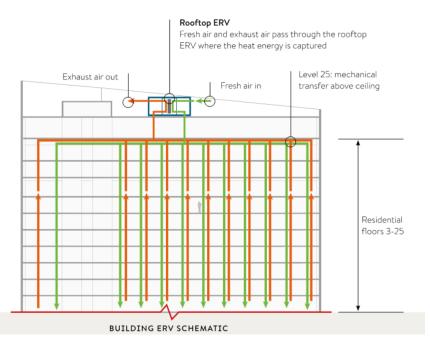

Obtaining city approvals for the building was definitely more complicated than for more typical projects built to code. There were technical issues where the requirements for Passive House and the city building code came into conflict. Since then the city has worked with the Passive House community to solve any conflicts with the code.

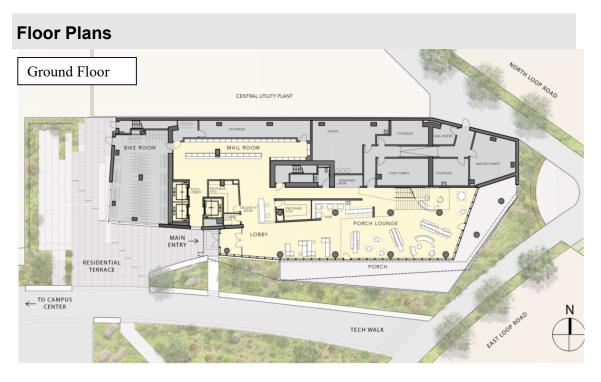
Responsible project participants		
Architect	Handel Architects LLP https://handelarchitects.com/	
Building systems MEP	Buro Happold https://www.burohappold.com/	
Structural engineering	Buro Happold https://www.burohappold.com/	
Building physics	Vidaris http://www.vidaris.com/	
Passive House project planning	Lois Arena, Steven Winter Associates www.swinter.com	
Construction management	Monadnock Construction Inc. http://moncon.com/	

Certifying body			
Tomás O'Leary, Passive House Academy			
https://www.passivehouseacademy.com/			
Certification ID			
5202	Project-ID (<u>www.passivehouse-database.org</u>)		

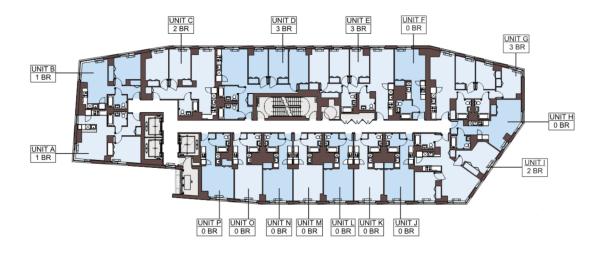
Author of project documentation		
Lois Arena (Steven Winter Associates)		
Date	Signature	
05/09/19	Join Blero	

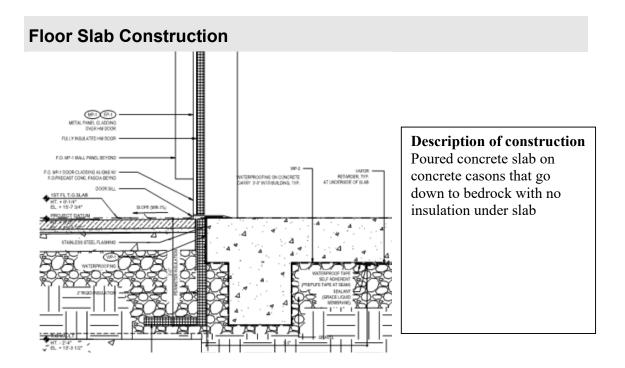
Building Elevations

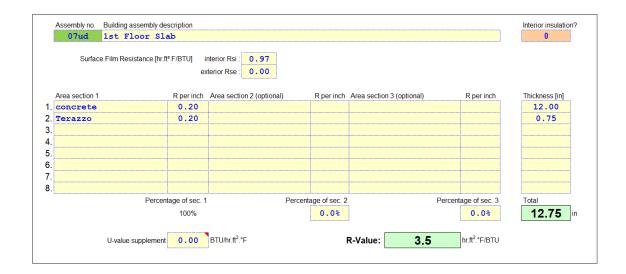



Interior Photo

Section



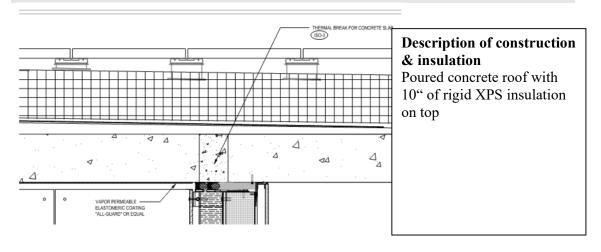


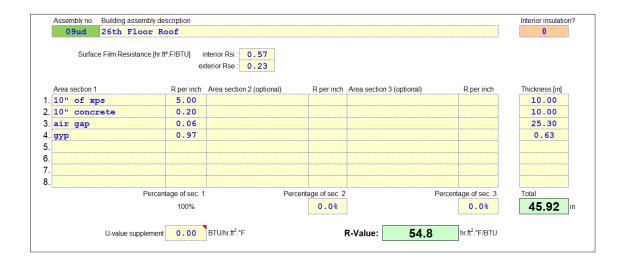


Typical Floor

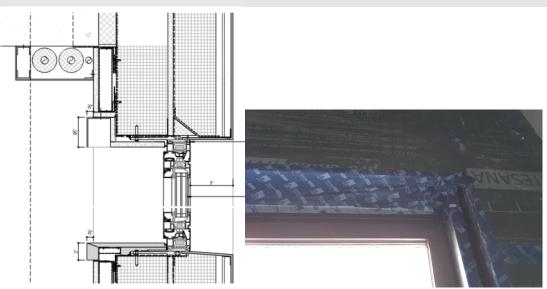
16 Units per Floor

Exterior Wall Construction

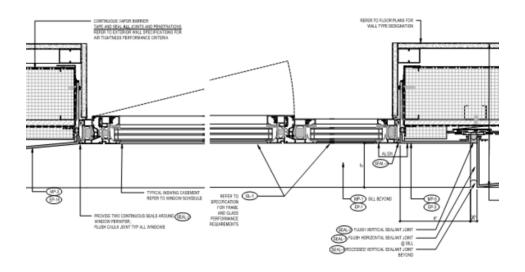

2 3.


4 5 6

8.


03/2016

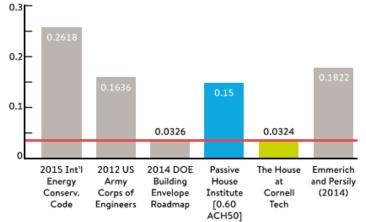
Roof Construction



Window Construction & Installation

Product & type	Schueco, ASW 75		
	Aluminium frame		
	Operable and fixed apartment windows,		
	fire rated windows, and storefront		
	windows		
Frame U-value Uf	1.35 W/(m ² K)		
Glazing U-value Ug	0.6 W/(m ² K)		
Glazing g-value	29%		

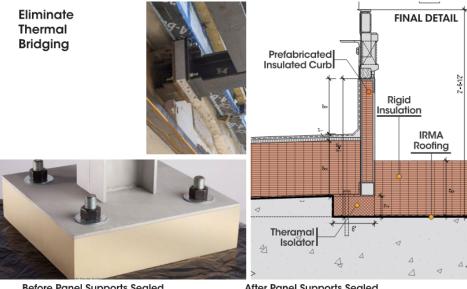
Airtight Building Envelope



Description of airtight cover

Air barrier spans the concrete slab on grade, transitions to the metal wall panel that has an interior air and vapor barrier which transitions to the concrete roof slab

WHOLE BUILDING LEAKAGE REQUIREMENTS & RESULTS

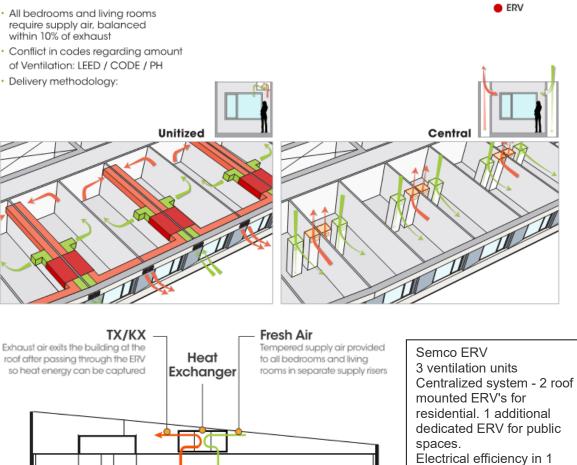


Sealed envelope construction

A whole-building pressure test measures total leakage through the building envelope - with external windows and doors closed - to ensure a project achieves the Passive House criteria. The results of the test on June 3rd, 2017 resulted in a measured airtightness of just 0.13 air changes per hour (ACH50) at 50 pascals - an exceptionally successful result against the maximum 0.60 ACH50 criteria. Based on calculations by Steven Winter Associates, 0.60 ACH50 is approximately equivalent to 0.15 CFM/SF for this building.

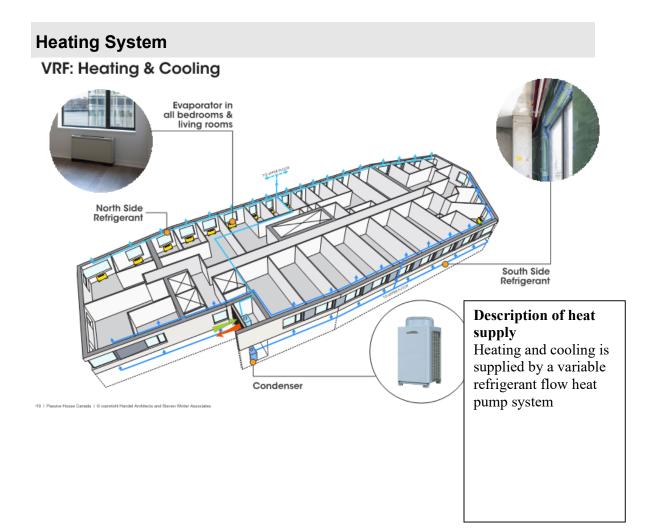
Note: CFM/SF at 50 Pa has been estimated as 66.5% of CFM/SF at 75 Pa where applicable so units are comparable in the graph shown above. Note: Emmerich and Persily (2014) provide six-sided average results from 79 buildings with an air barrier from the NIST US Commerical Building Air Leakage Database.

Before Panel Supports Sealed


After Panel Supports Sealed

Ventilation System

Balanced Ventilation with Heat Recovery


- All bedrooms and living rooms require supply air, balanced within 10% of exhaust
- · Conflict in codes regarding amount of Ventilation: LEED / CODE / PH
- · Delivery methodology:

W/CFM REVIEWED BY Edwin Tang, RA ctor nt Hub doeu aug CCD1(34237) П

🛑 Exhaust Air

🔵 Fresh Air

PHPP Results

Passive House verification						
Building:	The House at Cornell Tech					
Street Address:	1 East Loop Road					65
City, State, Zip:	Roosevelt Island, New York 10	044				
Country:	United States					
Building type:	Student Housing			A BORGER of Local	diamatika (Marakakanan ana kara)	130
Climate:	NY, New York			Alletude of built	ding site (feet above sea level)	130
Home owner / Client:	Cornell University					
Street Address:	1 East Loop Road Roosevelt Island, New York 10	044				6
City, State, Zip:		044				
Architecture:	Handel Architects					65
Street Address: City, State, Zip:	120 Broadway, 6th Floor New York, NY 10271					
and a set of a second						
Passive House Consultants: Street Address:	Steven Winter Associates, Inc					2.5
City, State, Zip:	61 Washington Street Norwalk, CT 06854					
Year of construction:			68.0	°F	Enclosed volume V, ft ³	2716322
No. of dwelling units:		emperature winter: perature summer:	77.0	°F	Mechanical cooling	
No. of occupants:		eat sources winter:	1.30	BTU/h.ft²	wechanical cooling	
Spec. capacity:	19 BTU/F per ft ² TFA	Ditto summer:		BTU/h.ft ²		
		and the second of the				λ
Specific building demands w	ith reference to the treated floor area	-	1			
	Treated floor area	198339	ft²		Requirements	Fulfilled?*
Space heating	Heating demand	3.91	kBTU/(ft ² yr)	82% of	4.75 kBTU/(ft²yr)	yes
	Heating load	3.75	BTU/(hr.ft ²)	118% of	3.17 BTU/(hr.ft²)	•
Space cooling	Overall specif. space cooling demand	3.39	kBTU/(ft ² yr)	63% of	5.39 kBTU/(ft²yr)	yes
	Cooling load	2.88	BTU/(hr.ft ²)	REFERENCE	-	
	Frequency of overheating (> 77 °F)	0	%		•	-
Primary energy	Heating, cooling, dehumidification, DHW, auxiliary electricity, lighting, electrical appliances	37.8	kBTU/(ft ² yr)	99% of	38.0 kBTU/(ft²yr)	yes
DHW, space heating and auxiliary electricity 19.8 kBTU/(ft ² yr)					1.43	
Specific primary energy reduction through solar electricity kBTU/(ft ² yr)				-		
Airtightness	Pressurization test result n ₅₀	0.1	1/h		0.6 1/h	yes
				* en	npty field: data missing; '-	: no requirement
Passive House?						yes

Building Challenges and Solutions

Design Challenges

Due to the long construction period of a high rise residential building, a testing method for airtightness needed to be found during the construction process before the entire building was sealed off, but before the lower floors of the building were going to get sheet rock and finishes. The design and construction team worked to develop a "guarded blower door test," whereby the team sealed off three floors to create a chamber to do a blower door test.

Design Solutions- Envelope

Specifying a building envelope that would meet Passive House criteria and withstand very high wind loads. The solution involved galvanized steel framing and custom prefabricated wall panels—30 ft long by 12 ft high—with built-in windows. The insulation and air barrier membrane from one wall panel were taped to the next one on site to ensure continuity. Keeping those panels securely attached to the framing required 123 anchors on each floor, and each one of those anchors had to be insulated and air sealed.

Design Solutions- MEP Systems

Even though this building is in a heating-dominated climate, energy modeling showed that it would require much more cooling than heating. The solution was to use variable refrigerant flow (VRF) mini-split heat pumps, ganging up multiple evaporators with one 8-ton condenser on each floor, placed on a small mechanical equipment balcony.

User Experiences

A small survey of 7 units was completed with the majority of occupants indicating they were very happy with the green features in the building, including that it is Passive House. They liked that the bulding was quiet inside, energy is being saved, and fresh air. A single occupant commented on hiw abesence of asthma symptoms since moving into the building. Occupants noted that they would pay more for a Passive House and on average are getting sick less often since moving in.

More Resources

- <u>https://www.dropbox.com/sh/x63fcomnnsix7yk/AACvepiiphP3R3lkaaQbqJIDa</u>
 <u>?dl=0</u>
- <u>https://thehouseatcornelltech.com/</u>
- https://tech.cornell.edu/campus/the-house-at-cornell-tech/
- <u>https://handelarchitects.com/project/the-house-at-cornell-tech</u>
- <u>https://passivhausprojekte.de/index.php?lang=en#d_5202</u>