Kellogg College Hub Project Documentation

1. Abstract

1.1 Summary

Kellogg College Hub is a café and social space in central Oxford, UK, built for Kellogg College and Oxford University in 2017. The building consists of a common room and café and includes a commercial kitchen. The south-orientated building is constructed from concrete, is super-insulated with over 250mm PIR insulation on the walls and roof, and features demand-controlled ventilation to the main spaces and a commercial kitchen.

1.2 Building Data

Year of construction	2017	Space heating	13
			kWh/m²/yr
U-value external wall	0.083	Primary Energy Renewable (PER)	76.8 kWh/m ^{2/} yr
U-value ground floor	0.138	Generation of renewable energy	0 kWh/m²/yr
U-value roof	0.062	Non-renewable Primary Energy	106 kWh/m²/yr
U-value windows	0.883	Pressure test n ₅₀	0.58
Heat recovery	82%		
Special features	The bui	Iding features a commercial kitchen	with demand-controlled
	heat re	covery ventilation. The building has a	a brown roof.
Passivhaus Database ID	6410		

2. Project Team

Architect	Feilden Clegg Bradley Studios (Charlotte Walker)
	https://fcbstudios.com/
Building Services Engineer	CBG Consultants (Chris Swinburn/Chris Dicks)
Passivhaus Consultant	CBG Consultants (Chris Swinburn)
Passivhaus Certifier	WARM energy building practice
Structural Engineer	Price & Myers
Project Manager	Ridge & Partners (Tim Leigh)
Contractor	Speller Metcalfe (Adrian Metcalfe)

3. External Views of Kellogg College Hub Passivhaus

South-facing view- showing terrace and shading canopy:

View of north elevation- showing MVHR intakes and exhausts hidden within the brickwork:

West-facing view- showing main entrance:

East-facing view looking into the café:

4. Internal Views of Kellogg College Hub Passivhaus

Interior views across the common room and cafe:

5. Sectional Drawing

Sectional drawings of the building are shown below. A few items to note:

- The external shading on the south façade creates a covered terrace, as well as protecting the building from the high summer sun, while permitting low level winter sun.
- The common room and café feature a ceiling plenum through which fresh air is supplied to the space.
- Rooflights in the common room and café bring light to the rear of the space

6. Floor Plans

The floor plan for the building is shown below. The two main spaces are the common room and café, separated by a sliding screen- which is normally left open to create one large space. A commercial kitchen and servery to the north-west of the plan is capable of servicing general café use, or larger scale catered events. The remainder of the floor plan is made up of circulation, WCs and storage, with the plant room housing the main MVHR unit, boiler and hot water storage.

7. Construction of Floor Slab

The building is supported on a strip foundation which runs around the perimeter and below internal structural walls. The ground floor slab spans between the strip foundations, with thermal separation achieved using foamglas structural insulation blocks (250mm). The floor slab is insulated below using EPS insulation (200mm), and with 25mm of PIR insulation below the screed.

Insulation Type	Location	Product	Conductivity
Structural insulation	Between slab and strip foundations	Foamglas Floorboard F	0.05W/mK
EPS	Below slab	Cordek Filcor 140, 250mm	0.032 W/mK
PIR	Below screed	Xtratherm Thin-R 25mm	0.022 W/mK
PIR	External walls	Xtratherm Thin-R 250mm	0.022 W/mK

Ground Floor	Screed 25mm PIR insulation (0.022W/mK) Concrete slab 250mm EPS insulation	U-value: 0.138 W/m ² /K
--------------	--	---------------------------------------

Constructed wall to floor junction:

Δ

Δ

Δ

Δ

Laying of the floor insulation: white insulation is EPS, black insulation is foamglas:

8. Construction of External walls

The external walls are constructed from in-situ cast concrete, insulation with 250mm of PIR insulation, with a cavity and single skin brickwork exterior.

The concrete walls form a flat surface onto which the insulation boards can sit flat. The PIR insulation is fixed, in two layers, using the wall ties which support the brickwork. The boards have tongue and groove joints, with low expansion foam used to fill any gaps.

Insulation Type	Location	Product	Conductivity
PIR	External walls- above	Xtratherm Thin-R	0.022 W/mK
	DPC	250mm	
EPS	External walls- below	Cordek Filcor 140,	0.032 W/mK
	DPC	250mm	

External Walls	Cast in-situ concrete 250mm PIR insulation (0.022W/mK) 50mm cavity 100mm brickwork	U-value: 0.083 W/m²/K
----------------	---	--------------------------

Left- PIR insulation (first later) fixed to cast concrete walls. Right- EPS insulation below damp-proof course:

PIR insulation – note wall ties:

Wall to wall junction- gaps between boards will filled with low-expansion foam:

9. Construction of Roof

The roof is constructed from pre-cast concrete planks laid on top of steel beams, and grouted into the external concrete walls. 320mm of PIR insulation is laid on top of the planks, with a waterproof membrane above, and a brown roof above that.

To minimise thermal bridging, the decorative metal frieze around the perimeter of the roof is fixed into a timber cassette constructed of timber i-beams, which are fully insulated with PIR insulation.

Insulation Type	Location	Product	Conductivity
PIR	Roof	BauderPIR FA	0.022 W/mK
		320mm	
PIR	Timber cassettes	Xtratherm Thin-R	0.022 W/mK

Roof	Pre-cast concrete planks 320mm PIR insulation (0.022W/mK) Roof membrane	U-value: 0.062 W/m ² /K
	Brown roof	

Roof construction:

Roof to wall junction- showing timber cassette which supports the metal frieze:

PIR Roof Insulation:

Insulated timber 'cassette' which supports decorative metal freeze:

10. Window and Installation of Windows

The windows used on the project were Ecowin and have an average U-value of $0.88 \text{ W/m}^2/\text{K}$. The performance of the glazing was maximised by keep glazing elements simple (to minimise frame area). The south-facing windows give a net energy benefit to the building by harvesting winter solar gain.

The windows are fixed using metal straps, which creates a gap between the window and surround structure. This is filled with fire-stopping cavity batts which also act as the insulation and provide a tight connection to the external wall insulation. Along the south façade, thermal bridging is minimised by the use of timber i-joists which create a suitable fixing structure for the window frames.

Window Pro	operties
Supplier/Manufacturer	Econwin/Gaulhofer
Product	Fusionline
Ug 0.54 W/m ² /K	
Uf (typical)	1.0 W/m²/K
g-value	0.53 W/m²/K
Uw (average)	0.88 W/m²/K

	Triple glazing with low-e coatings, filled with	
Windows	(timber/aluminium) with low conductivity	0.883
	spacers.	

Typical Window Jamb Detail:

Thermal analysis of south façade window jambs:

11. Airtight Building Envelope

Air tightness is primarily provided by the cast in-situ concrete walls, which link onto the screed, and onto the concrete planks which form the roof. Airtight tapes and membranes were used to connect the concrete to windows and at other interfaces between elements.

Fan blower door test:

Air barrier connections:

- 1. membrane around columns and onto windows
- 2. tapes between concrete roof planks
- 3. Tape from windows to concrete walls
- 4. Tape around steel beam
- 5. Tape from screed to windows.

	т		ONS & RESULTS				
HRS REF:		123404					
BUILDING:		The Kellog University 62 Banbur Oxford Oxfordshir OX2 6PN	The Kellogg College Hub University of Oxford 62 Banbury Road Oxford Oxford Oxfordshire				
BUILDING TYPE:		Commerci	al				
YEAR OF CONSTRUCTION:		2017					
CLIENT:		Speller Me	tcalfe				
CLIENT CONTACT:		Dave Hull					
TEST DATE:		29/03/201	7				
TIME OF TEST:		14:21					
BUILDING REGULATIONS:		Building R New Buildi	egulations 2013, Part L2A Co ngs Other Than Dwellings	nservation of Fuel and Power in			
NON RESIDENTIAL PASSIVH	AUS BUILDINGS	The Criteri maximum	a for Non-Residential Passivh acceptable leakage is <0.6 aiı	aus Buildings denotes that the r changes per hour.			
PASSIVHAUS SPECIFICATIO	N	0.6 ACH					
DESIGN AIR PERMEABILITY	CRITERIA:	0.7 m ³ /(h.r	n²) @ 50Pa				
		0.57 m ³ /(h	.m ²) @ 50Pa				
(m²/(h.m²) @ 50Pa): TEST RESULT PRESSURISATION (m³/(h.m²) @ 50Pa);		0.54 m ³ /(h	.m ²) @ 50Pa				
AIR CHANGES PER HOUR		0.58 ACH					
ENVELOPE AREA (m ²):	1014		FOOTPRINT (m ²):	339			
VOLUME (m3):	966.6						
note that Passivhaus certification internal partitions, stairs, floor v ENVELOPE AREA CALCULA	on requires the vol oid etc. TIONS UNDERTA	INCS Services ume to be cal	HRS	Sebastian Martinez			
AREA TESTED:		Entire	Entire				
AREA EXCLUDED:		None					
TEST TYPE:		Whole buil	Whole building				
VENTILATION TYPE:		System 5 - Other					
MASTIC SEALING STATUS:		Sanitary w	are only				
TEMPORARY SEALING APPL	LIED TO INTENTI	ONAL OPENI	NGS FOR THE TEST:				
ELEMENT	TEMPORARY SEAL?	COMMENT/	EXTENT OF SEALING				
MECHANICAL VENTILATION	Yes						
TRICKLE VENTS	No						
AIR CONDITIONING	No						
PASSIVE VENTILATION	No						
CHIMNEY FLUES	No						
DRAINAGE TRAPS	Yes						
OTHER	No						
TEMPORARY SEALING TO M	IISSING OR BROI	KEN COMPO	NENTS APPLIED FOR THE	TEST:			
NON-COMPLIANT TEMPORA	RY SEALING AP	PLIED FOR T	HE TEST:				
TEMPORARY SEALING NOTES:	It should be noted airtight than the ele air tightness for the	I that any tempo ement they repl e quoted test re	rary seals applied to unintentiona ace. The complete elements shou sult to remain unchanged.	al openings may, in practice, be more ild therefore be of an equal standard of			
The agreed test state of the test	t area is with all exte employed	ernal windows a I to remain intac	nd doors closed, and all internal o t for the duration of the test.	loors open, with any temporary seals			
Tel	HRS Services Lt : 0114 272 3004 Em	Page d, The Maltings ail: altas@hrsse	e 2 of 5 81 Burton Road, Sheffield, S3 8 arvices.co.uk Web: www.hrsservic	BZ ses.co.uk			

					D	ETAILS	OF RES	JLTS						
API (m ³ /(h.m ² @ 50Pa):) 0.57				(Q ₅₀) A	(Q ₅₀) AIR FLOW RATE AT 50PA (m ³ /s):						0.15	0.1595	
HRS REF:	1234	104			(n) AIR	FLOW	EXPONE	NT :				0.76	56	
BUILDING:	The depr	Kellogg Col essurised v	lege Hub 3		(r²) CO	RRELA	TION CO	EFFICIE	NT:			0.99	2	
TEST ENGINEER:	Lee	Kenton			(C _{env}) A	AIR FLO	W COEF	FICIENT	(m³/(s.Pa	a")		7.95	0000E-003	
TYPE OF TEST:	Dep	ressurisation	ı		(C∟) Al	R LEAK	AGE CO	EFFICIE	NT (m³/(s	.Pa ⁿ)		7.98	0000E-003	
WEATHER:		Dry				Clo	udy				No wind			
ENVELOPE AREA (m ²):	1014	ļ												
The enve	elope are	a for air per	meability	is define	d as the	area of t	he extern	al walls	plus the a	rea of	the ceiling/n	oof and t	he ground	floor
ZERO FLOWS	(Pa)													
Δ p _{0,1+} 3.50	1	\p _{0,1-}	0	.00		∆ p _{0,2+}		4.0	.00 Δ p _{0,2} .		Δ p _{0,2-}		4.00	
Δ p _{0,1} ,	1	3.50				∆ p _{0,2} ,			4.00					
PARAMETER	S		START	OF TES	т				END OF TEST					
EXTERNAL T	EMP (de	g C)	13.4						13.8					
INTERNAL TE	MP (deç	(C)	14.4						16.6					
BAROMETRIC	PRESS	URE (Pa)	101200)					101200					
FAN OFF PRE (Pa)	PRESSURE DIFF. 3.50							4.00						
INDUCED PRE	SSURE	DIFFEREN	ICES & A		V RATES	3								
(Pa) 66	61	57	49	44	41	35								
(m ³ /s): 0.20	0.19	0.18	0.17	0.16	0.15	0.13								
	FOR	THĖ FULL	SET OF (CALCUL	ATIONS	USED T	O CALC	JLATE	THE AIR F	PERM	EABILITY R	ATE:		
		http://ww	vw.hrsser	VICeS.CO	.uk/wp-co	ontent/up	loads/20	15/11/aii	permeab	olity c	alculations.	odt		

12. Ventilation System

12.1 Ventilation Units

The building is served by two air handling units (AHUs):

- Main AHU- serves the common room and café. The unit features a thermal wheel heat exchanger. It operates on demand (according to air quality and temperature) to supply fresh air to these spaces, while extracting air from the WCs, café servery, vending machines and other back-of-house areas.
- **Kitchen AHU** extracts from the cooking canopy and supplies fresh air back to the kitchen. The unit features a plate heat exchanger. An electrostatic precipitate filter removes grease from the airstream before it enters the unit. The unit operates according to demand by monitoring the return air temperature and increasing its speed when needed.

Air Handling Units							
Unit	Main AHU	Kitchen AHU					
Supplier/Manufacturer	Swegon	VES					
Product	Gold RX 11	Max 13 A/FP/S					
Heat Recovery Type	Thermal Wheel	Plate					
Heat Recovery	82%	76%					
Specific Fan Power	0.45Wh/m ³	0.56 Wh/m ³					

Ventilation drawing show location of AHUs:

12.2 Layout of the ventilation system ducting

A ductwork system delivers fresh air and extraction around the building. The intake and exhaust to the air handling units are through 'hit n' miss' brickwork openings on the north façade.

Fresh air is supplied from the main AHU to the common room and café via a pressurised ceiling void, which reduces the amount of ductwork required, and creates a thermal connection between the fresh air and concrete planks. Fresh air is supplied into the ceiling and enters the spaces below through induction diffusers. The induction diffusers allow the air to be supplied colder without creating cold draughts.

The corresponding extraction of air is from WCs, plant room, vending machines and store rooms. Acoustically treated air transfer ducts allow the passive transfer of air from the common room and café and into the corridor. From here it flows through transfer grilles into the WCs, plant room etc.

The kitchen AHU extracts from the cooking canopy, while supplying most of the fresh air into the kitchen. To keep the kitchen under negative pressure (to control odours and moisture), 15% of the fresh air is supplied into the adjacent corridor. This air makes its way back to the kitchen through door transfer grilles.

Air flow strategy:

Ductwork distribution drawing:

Ductwork Installation photos:

Air distribution features:

- Top left- induction diffuser prior to mounting.
- Top middle- ventilation supply through ceiling (with induction diffuser behind)
- Top right- intake and exhaust through 'hit n' miss' brickwork
- Bottom left- air transfer into kitchen
- Bottom right- air transfer into plant room

13. Space Heating System

Space heating is provided from a gas boiler which also serves the hot water system. The boiler heats a buffer vessel, which prevents short cycling. A pumped circuit from the buffer vessel connects to three radiators, which heat the entire building.

Left- radiator in café. Right- boiler and buffer vessel:

Space heating drawing:

14. PHPP Calculations

Passive House Verification											
1	111111111 N.	- 12 I			Buildina:	Kelloga Coll	ege Hub				
			Street:	Banbury Rd							
			Postcode/City:	OX2 6PN	PN Oxford						
			Province/Country:	Oxfordshire	GB-United Kingdom/ Britain						
			Building type:	Social Hub 8	k Café						
			Climate data set:	GB0002a-Sil	a-Silsoe						
			Climate zone:	3: Cool-temp	temperate Altitude of location: 66 m						
			Home owner / Client:	Kellogg College							
				Street:	Banbury Rd	nbury Rd					
					Postcode/City:	OX2 6PN	Oxford				
					Province/Country:	Oxfordshire	GB-United Kingdom/ Britain				
Architecture:	Feilden Clegg	Bradley Studio		Mechanical engineer:	CBG Consultants						
Street	Bath Brewery, Toll Bridge Rd				Street:	South House	use, 3 Farmoor Court, Cumnor Rd				
Postcode/City:	BA1 7DE	BA1 7DE Bath			Postcode/City:	OX2 9LU	Oxford				
Province/Country:			GB-United Kin	gdom/ Britain	Province/Country:	Oxfordshire		GB-United King	gdom/ Britain		
Energy consultancy:	CBG Consultants				Certification:	WARM: Low	1: Low Energy Building Practice				
Street	South House, 3 Farmoor Court, Cumnor Rd				Street:	3 Admirals H	nirals Hard				
Postcode/City:	OX2 9LU	OX2 9LU Oxford			Postcode/City:	PL1 3RJ	PLYMOUTH				
Province/Country:	Oxfordshire		GB-United Kin	gdom/ Britain	Province/Country:	Devon		GB-United King	gdom/ Britain		
Year of construction:	2017 Interior temp				rior temperature winter [°C]:	20.0	Interior temp. summer [°C]: 25.0				
No. of dwelling units:	1 Internal heat gains				(IHG) heating case [W/m ²]:	2.8	IHG cooling case [W/m²]: 2.8				
No. of occupants:	80.0 Specific c				capacity [Wh/K per m² TFA]:	150	Mechanical cooling:				
Specific building character	istics with referen	nce to the treated	i floor area								
	Tre	eated floor area	m²	303.3		Criteria	Alternative criteria		Fullfilled? ²		
Space heating	н	leating demand	kWh/(m²a)	13	≤	15	-				
Heating load W/m²			11	≤	-	10		yes			
Frequency of overheating (> 25 °C) %				≤	10			yes			
Frequency of excessively high humidity (> 12 g/kg) %				0	≤	20			yes		
Airtightness Pressurization test result n ₅₀ 1/h			0.6	≤	0.6			yes			
Non-renewable Primary	Energy (PE)	PE demand	kWh/(m²a)	106	≤	135			yes		
				J			² Empty field: D	ו)ata missing; '	-': No requirement		
I confirm that the values of	iven herein have	heen determine	ed following t	he PHPP methodo	logy and based on the chara	octeristic					
values of the building. The PHPP calculations are attached to this verification.					logy and based on the chart	otoriatio	Passive Hous	se Classic?	yes		
Task:	, ,		First name:	1		Surname:	1		Signature:		
2-Certifier	l l	Michael]	Roe		1				
15797 WARM PH 2017	0508 MR		Certificate ID	Issued on:	Plymouth	City:	1				
10.01_10_10_2011				00/00/11	jsuu		1				

15. Construction Costs

Cost data for this project is confidential and is therefore not available.

16. Measured Results

Energy Performance Data 16.1

Energy data collected in the first year of operation is summarised below. Note that this data was extrapolated from 6 months of data. Key points to note:

- Design estimates are generally close to actual energy consumption. •
- Space heating and hot water demand are below that predicted •
- Kitchen energy use is below that predicted. •
- Lighting and small power energy consumption is higher than predicted. •

Energy Demand by End Use

Environmental Performance Data 16.2

Air temperature data for the café and common room has shown that during hot weather, the building performs extremely well. As the graph below shows, not only does the building suppress temperatures by 3-4degC compared to outside conditions, but the thermal mass of the building also creates a response lag.

Overheating Performance

