Project Documentation

1 Abstract

EnerPHit factory building in Katunayake, Sri Lanka

1.1 Data of building

17. Year of Construction

Year of construction	2016	Space cooling	183			
U-value external wall	0.33 W/(m²K)		kWh/(m²a)			
U-value basement slab	5.79 W/(m ² K)	Primary Energy Renewable (PER)	164 kWh/(m²a)			
U-value roof	0.18 W/(m ² K)	Generation of renewable energy	19 kWh/(m²a)			
U-value window	1.81 W/(m²K)	Non-renewable Primary Energy (PE)	344 kWh/(m²a)			
Heat recovery	69 %	Pressure test n ₅₀	0.8 h-1			
Special features	cooling loads. Highly	High-performing curtain wall with low absorption or highly reflective to reduce cooling loads. Highly reflective Roof. Wrap around heat pipes in primary AHUs for passive dehumidification reheat.				

1.5 Specialties

18. Information about the design/ Architecture

The project's location in a hot and humid climate, combined with its use as a manufacturing facility, resulted in a heightened focus on strategies to reduce gains from both the sun and from equipment and occupants in the space. The existing building's steel structure was primarily preserved for the renovation with additional framing added as required. The perimeter of the building features long roof overhangs as well as exterior window shading screens to reduce solar gains in the building. A highly efficient double pane curtain wall system with ultra-low solar heat gain glazing was used to further reduce cooling loads. EIFS was used at the opaque portions of the façade to create a continuous thermal and air tight enclosure around the building. To further reduce thermal bridging, thermal breaks were used at steel attachments for the window screens and Aerolon paint was used on existing steel members that were penetrating the continuous insulation layer. At the project's completion, the building tested at whole building air tightness of 0.78 ACH50.

19. Information about the building services

Ventilation to the building is provided by 69% efficient energy recovery ventilators (ERVs) which help keep heat and humidity out of the building year-round. The primary cooling system in the building is a variable refrigerant flow (VRF) system. 2 large air handling units with heat pump coils provide cooling to the primary work floor. These air handling units feature wrap around heat pipes to passively provide extra dehumidification / reheat capacity to the system. These heat pipes save the project approximately 108,000 kWh/yr in dehumidification energy alone. Given the project's unique typology as a manufacturing facility, detailed surveys and analysis of the process loads in the spaces were done at multiple iterations of the project to ensure internal loads were being modelled properly.

20. (if involved) Information about the building physics

N/A

21. (if involved) Information about the structural design

See notes regarding structure in section 18.

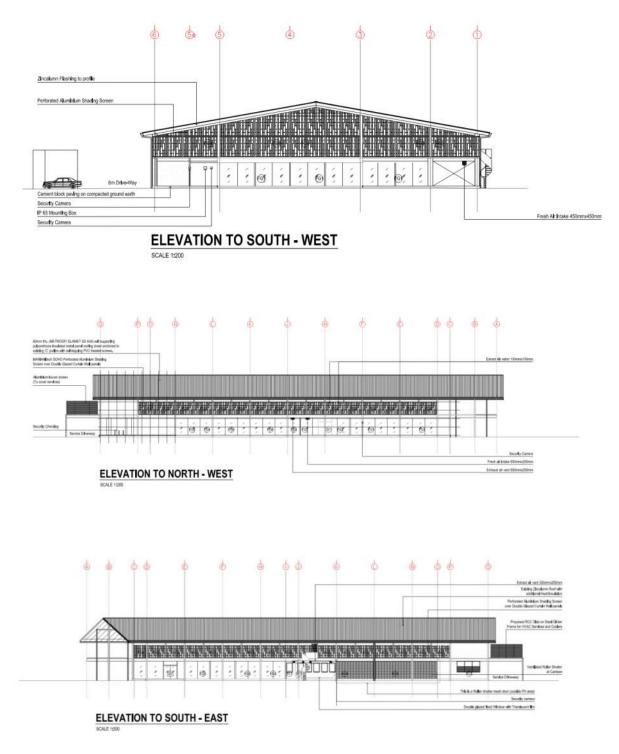
http://jpda.net/
Chandana Dalugoda Consultants
http://www.chandanadalugoda.net/
Kosala Kamburadeniya PE
Ajith Vandebona PE
Dylan Martello, Steven Winter Associates www.swinter.com
·
-

Certifying body	Dragos Arnautu, Passive House Institute

Project Documentation

	https://passivehouse.com/	
Certification ID	Project-ID (www.passivehouse-database.org)	6030

Author of project documentation				
Dylan Martello (Steven Winter Asso	ociates)			
Date	Signature			
11/19/2021	D.J.m. Maar			


2. Abstract

Steven Winter Associates, Inc. (SWA) worked remotely with a project team across the world to retrofit an outdated factory in Katunayake, Sri Lanka and turn it into an EnerPHit Passive House certified garment manufacturing facility. Jordan Parnass Digital Architecture, the Passive House Designer for the project, recruited SWA to provide technical assistance to the project team. SWA services for this project include Passive House design analysis and recommendations, mechanical design review, energy and thermal bridging modelling, as well as testing and verification required for Passive House certification.

The team enlisted the guidance of the Passive House Institute (PHI) early on in the project's development to tackle the many complexities associated with the EnerPHit standard - a Passive House certification that was designed by PHI for the renovation of existing buildings. The project's location in a hot and humid climate, combined with its use as a manufacturing facility, resulted in a heightened focus on strategies to reduce gains from both the sun and from equipment and occupants in the space. A high-performing curtain wall, with a solar heat gain coefficient of 0.22, was designed in conjunction with strategically designed overhangs and external shading screens to reduce the overall heat gain into the building.

The opaque portions of the thermal envelope feature an Exterior Insulated Finish System (EIFS) to continuously wrap both existing and new structural components in insulation with minimal thermal bridging. All exterior surfaces coatings have been specified as low absorption or highly reflective to further reduce cooling loads. Mechanical systems include advanced dehumidification controls that utilize waste heat from the cooling system to enhance the dehumidification capacity. Controlling the humidity in the space is not only essential for Passive House certification, but also for ensuring optimal thermal comfort for occupants.

3. Building Elevations

View from East. Photo courtesy of Ganidu Balasuriya Photography (2018)

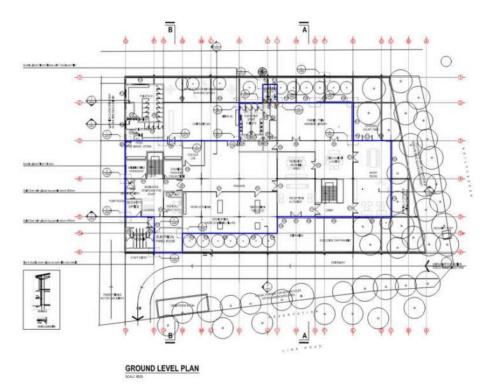
View from West. Photo courtesy of Ganidu Balasuriya Photography (2018)

4. Exemplary photo from the inside of the building

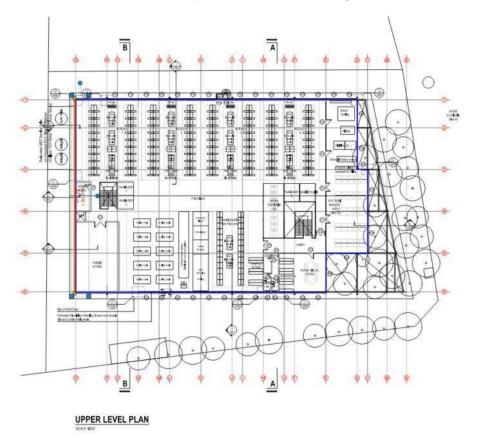
Interior Ground Floor Entry. Photo courtesy of Ganidu Balasuriya Photography (2018)

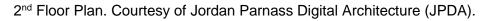


Interior 2nd Floor. Photo courtesy of Ganidu Balasuriya Photography (2018)


Interior 2nd Floor. Photo courtesy of Ganidu Balasuriya Photography (2018)

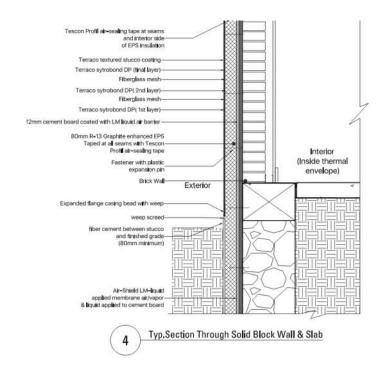
5. Sectional view of the building




Select wall sections. Courtesy of Jordan Parnass Digital Architecture (JPDA).

6. Floor plans

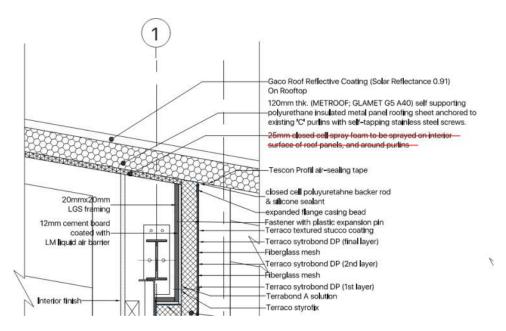
Ground Floor Plan. Courtesy of Jordan Parnass Digital Architecture (JPDA).


7. Construction of floor slab / basement ceiling

Existing floor slab remained uninsulated. It was concluded that no significant energy or comfort benefits would've resulted from insulating this slab.

8. Construction of the exterior walls

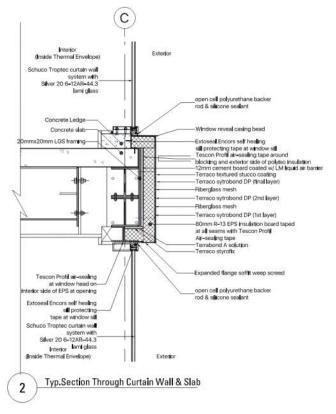
The exterior walls were built around the existing steel structure to limit thermal bridging on the project. Brick was the primary backup material for the exterior wall structure. To the exterior of the brick is a 12mm cement board layer which acted as the substrate for the continuous fluid applied air barrier. To the exterior of the cement board and air barrier is an 80mm thick EPS insulation layer with a drainage layer behind it and stucco on the exterior to complete the building exterior insulated finish system (EIFS). The exterior wall has a U-value of U-0.329 W/m².K.


Typical Exterior Wall Detail. Courtesy of Jordan Parnass Digital Architecture (JPDA).

9. Construction roof / ceiling of the top floor

The existing steel structure to support the roof was largely maintained for the retrofit. The primary roofing system is a 120mm self-supporting polyurethane insulated metal panel system. The roof has a U-value of U-0.182 W/m².K. To reduce thermal transmission through the roof structure, a highly reflective coating was applied to the exterior face of the roofing panels. Air sealing tape was applied at the roof to wall air barrier connections.

Typical Roof-Wall Detail. Courtesy of Jordan Parnass Digital Architecture (JPDA).



10. Windows and installation of the window

The windows are a double pane curtain wall system with Gutmann F50 thermally broken metal frames. The EIFS system was detailed to wrap under / over the window frame to provide continuity of the thermal insulation plane at the window to wall connection. The thermal performance of the window system components are as follows:

- U-frame = 1.61 W/m².K
- U-glazing = 1.20 W/m^2 .K
- G-value of glazing = 0.22

Typical Window Detail. Courtesy of Jordan Parnass Digital Architecture (JPDA).

11. Airtight building envelope

The primary air tight layer at the exterior wall is a fluid applied air barrier membrane applied to a 12mm cement board substrate. At the window to wall connection, a combination of caulk and tape was applied to achieve an air tight connection. Additional air sealing via spray foam was provided at the building's perimeter where continuous steel purlins penetrated the exterior wall assembly. The metal panel roofing structure with air sealing tape provided at the roof to wall connections acted as the primary air seal at the roof.

BACKGROUND

The factory building for Star Garments Group Private Limited at the Free Trade Zone is a gutrenovated, two-story, commercial manufacturing building located in Katunayake, Sri Lanka. The project is certifying to the Passive House EnerPHit standard with PHI. Part of the Passive House standard is to air seal the building so that it leaks no more than 0.6 air changes per hour (ACH) at a 50 Pascal induced pressure difference between indoors and outdoors, or 1.0 air changes per hour (ACH) with extra documentation. A blower door test is required to determine whether the target airtightness has been achieved.

TEST SPECIFICATIONS

Referenced Standards and Documents

- Airtightness measurements in Passive Houses Instructions for carrying out measurements (undated)
- EN13829 Thermal performance of buildings Determination of air permeability of buildings Fan pressurization method
- Guidelines for Blower Door Testing of Passive Houses (09/02/2018)

Airtightness Target

- 0.6 ACH50 air changes per hour at 50 Pascals induced indoor-outdoor pressure difference.
- This translates to a 5,058 CFM50 target for the whole building.
- 1.0 ACH50 air changes per hour at 50 Pascals induced indoor-outdoor pressure difference.
- This translates into a 8,430 CFM50 target for the whole building.

Building elevation:

44.8 feet above sea level

Table 1 – Areas and Volumes of the Building and Apartments

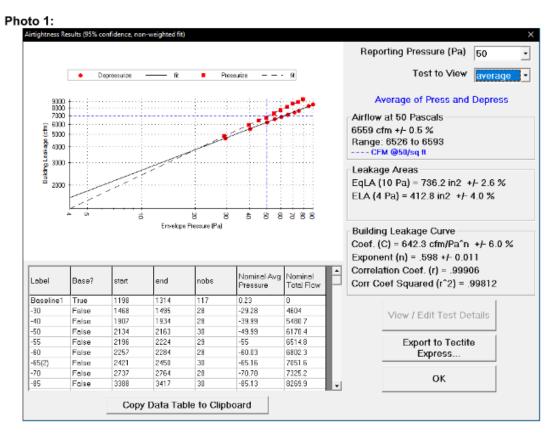
Description	Floor Area (Sq. Ft.)	Enclosure Surface Area (Sq. Ft.)	Volume (Cu. Ft.)
Whole Building	39,553 - TFA	70,230	505,812

Testing Agency

• Steven Winter Associates, Inc. - 61 Washington St. Norwalk, CT 06854

Test Team:

- · Primary test team contact: Lois Arena, SWA
- Michael O'Donnell, SWA
- Dylan Martello, SWA


TEST EQUIPMENT

Test equipment manufactured by The Energy Conservatory were used to test the building airtightness. Model 3 test fans were used to induce test pressures across the enclosure. Step down transformers (220-240v to 110-120v) and appropriate fan speed controllers (50 Hz chip) were utilized with the Model 3 test fans. DG-700 manometers were networked using cat5 cables through TECLOG3 software to collect air flow through test fans and air pressure differences between indoors and outdoors. TECLOG3 was used to perform analysis of the data in accordance with EN13829. Test equipment used in this test is listed in Table 2.

Test Condition for Doors, windows, HVAC equipment and HVAC related penetrations:

Per Passive House requirements, the HVAC envelope penetrations are to be sealed during the test, which can be seen applied to items in the list on PDF page 7. The initial air leakage observed was 8,713 CFM under depressurization during building diagnostics.

After extensive air sealing from the initial testing, the final tested average of both depressurized and pressurized was 6,559 CFM50. This translates to roughly 0.78 ACH50 and 0.093 CFM50/sqft enclosure. This result was calculated with <2% margin of error. The correlation coefficient squared was 0.998, rendering ~99% confidence for a near-perfect positive linear relationship between the building leakage and the envelope pressure.

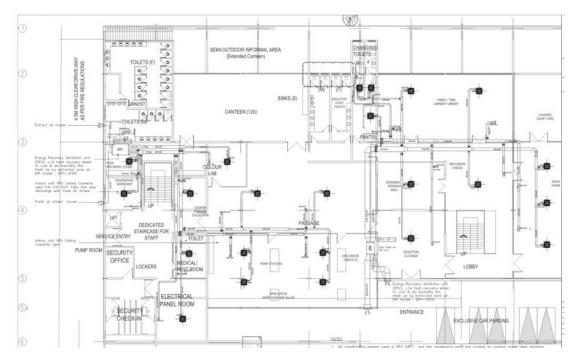
Below is the extended table of results:

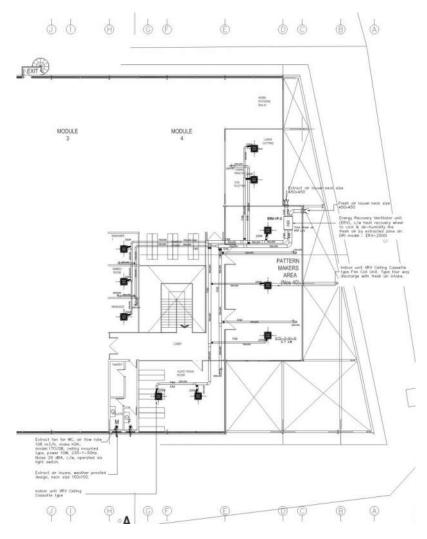
			Depres	ssurizati	ion		
Label	Start Time	Start Pa	End Pa	nobs	End Time	Nominal Avg. Pressure	Nominal Total Flow
Baseline1	9:25	1198	1314	117	9:27	0.23	0
-30		1468	1495	28		-29.28	4604
-40		1907	1934	28		-39.99	5480.7
-50		2134	2163	30		-49.99	6170.4
-55		2196	2224	29		-55	6514.8
-60		2257	2284	28		-60.03	6802.3
-65(2)		2421	2450	30		-65.16	7051.6
-70		2737	2764	28		-70.78	7325.2
-85		3388	3417	30		-85.13	8269.9
-75(3)		3540	3568	29		-75.2	7563.7
-90		3739	3768	30		-90.13	8516.9
Baseline2	10:11	3871	3986	116	10:13	0.05	0
	De	pressuriza	ation: Av	erage @	50Pa		6221

_ ...

Pressurization

Label	Start Time	Start Pa	End Pa	nobs	End Time	Nominal Avg. Pressure	Nominal Total Flow
Baseline3	10:23	4603	4718	116	10:25	0.43	0
30		5091	5120	30		29.06	4884.6
40		5525	5552	28		39.99	5953.7
45		5595	5624	30		45.12	6417.1
50		5657	5686	30		49.84	6776
55		5709	5738	30		54.97	7335.8
60(2)		5826	5855	30		59.91	7743.3
65(3)		6000	6029	30		65.19	8228.6
70		6218	6245	28		70.06	8757.9
75(2)		6341	6368	28		75.01	9017.5
80		6427	6456	30		80.04	9434.4
Baseline4	10:58	6604	6718	115	11:00	-0.02	0
	P	ressurizat	ion: Ave	rage @	50Pa		6898
		TOTAL:	Average	@ 50Pa	а		6559

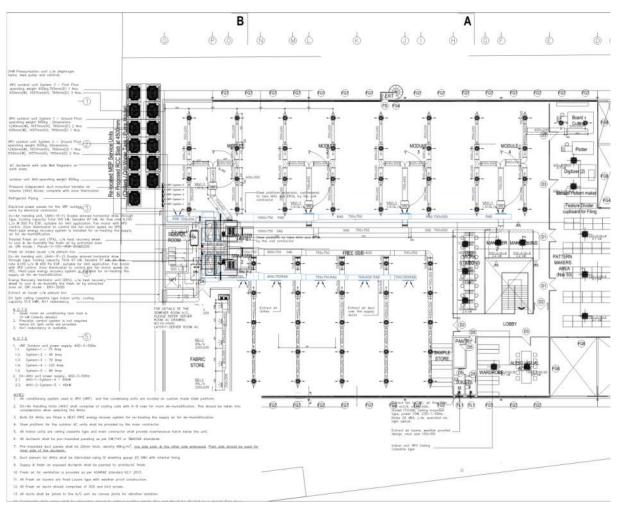

TOTAL: Average @ 50Pa


12. Layout of the ventilation system ducting

The ventilation air on the ground floor and a small portion of the upper floor is ducted directly from the ERVs to terminal registers in each interior room. See layouts and screenshot of efficiencies below.

ID	Description	Effective heat recovery efficiency	Energy recovery value η _{εR}	Electric efficiency
	User defined area	%	%	Wh/m ³
01ud	Sys 1: DRI - ERV 3000i	72%	70.0%	0.71
02ud	Sys 2: DRI - ERV 3000i	73.1%	71.1%	0.77
03ud	Sys 3: DRI - ERV 2000i	73.1%	71.1%	0.63

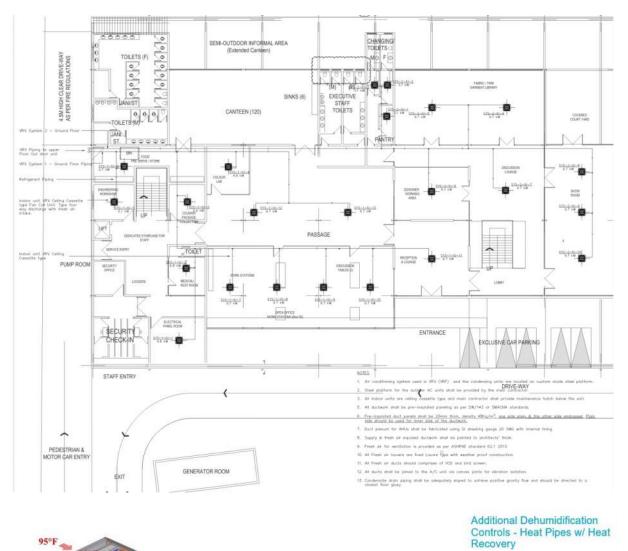
Ventalation / Ducting layout of ground floor.

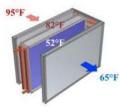


Ventalatoin / Ducting layout of office portion of upper floor.

13. Ventilation unit / central ventilation unit

The ventilation air for the main work area on the upper floor is provided via two ERVs that are ducted into two central air handling units (AHUs) providing cooling and fresh air to the majority of the upper floor. See layout and screenshots of efficiencies below. The two ERVs are supplied by Desiccant Rotors International (DRI).

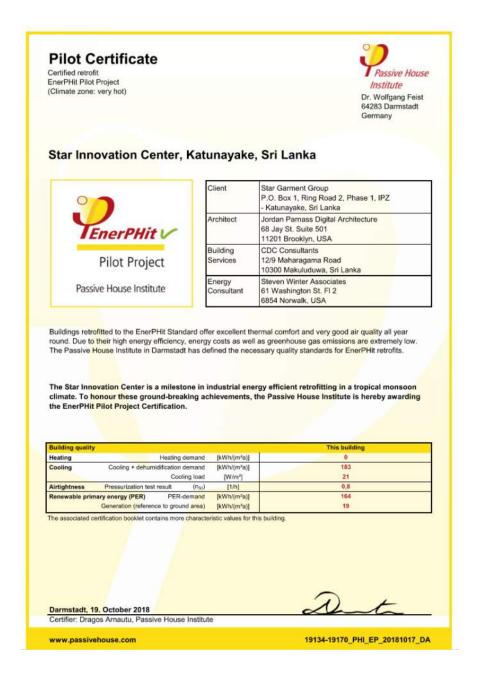

	Recommended specifications to start planning: Frost protection: No requirements; Humidity recovery: Yes	- %		0.45
ID	Description	Effective heat recovery efficiency	Energy recovery value η _{ER}	Electric efficiency
	User defined area	%	%	Wh/m ³
04ud	Sys 4: DRI - Flexair-S-150-HRW-900MS200	67%	61.3%	0.54
05ud	Sys 5: DRI - ERV 3000i	72%	70.0%	0.87


Ventilation / Cooling / Ducting layout of main work area on upper floor.

14. Cooling Supply

Cooling is supplied to the building via a vairable refrigerant flow (VRF) heat pump system. The AHUs for the upper floor have heat pump coils with wrap around heat

pipes to passively reheat the supercooled air; this allows for a highly efficient means of enhancing the dehumdification capacity of the cooling system.

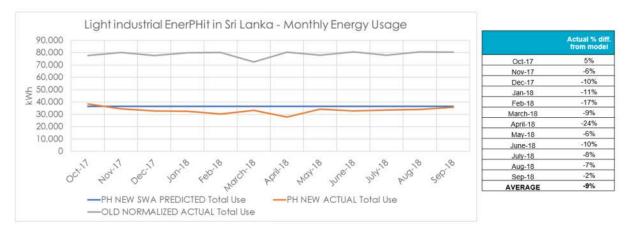


Air Properties Air Type:Standard

	Outside Air	Returned Air	Mixed Air (Standard)		Precool Leaving		Reheat Entering		Reheat Leaving
SCFM	8,683		8,683						
DBT (°F)	79.00		79.00		68.66		54.12		64.52
WBT (°F)	67.82		67.82		64.49		53.84		57.95
RH(%)	56.7		56.7		80.3		98.3		67.8
Coil Perfor	mance	-		Precool		Cooling Coil		Reheat	
	ure Drop (in. H2O)			0.21				0.21	
	Velocity (SFPM)			321.60				321.60	
	erature Gain/Loss("	F)		10.30				10.40	
	ble Effectiveness			41.57				41.81	
Heat	Transferred (BTU/h)			99,142 -		278.5	45	99,142	
Conde	ensation (lbs/hr)			0.0		- 128.3			

15. Short Documentation of PHPP-Results (verification sheet)

				Building:	Proposed Fa	ctory Building	for Star Garme	nts Group Priv
	and the		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ring Road 2			
Sec. 1	The Rouge	Re Car		Postcode/City:	Katunayake	3		
100	and the second		-	Province/Country:	Sri Lanka		LK-Sri Lanka	
Han State	-			Building type:	Textile manu	facturing & of	fices	
		60% au		Climate data set:	ud01-LK00	01a-Colombo	Katunayake	
				Climate zone:	7: Very hot	Alt	tude of location:	14.9 m
Re				Home owner / Client:				
The second s	and a second second		The second		P.O. Box 1, F	Ring Road 2, P	hase 1, IPZ	
See 1	13 STATE STATE			Postcode/City:	•	Katunayake	1	
A DATA AND A DATA	A started by			Province/Country:	•		Sri Lanka	
	Jordan Parnass D			Mechanical system:				
	68 Jay St. Suite 50			esperance (States)	12/9 Mahara			
Postcode/City	and the second se	ooklyn		Postcode/City:	10300	Makuluduwa	1	
Province/Country	New York	US-United Si	lates of America	Province/Country:	Piliyandala		Sri Lanka	
	Steven Winter Associates				Passive House Institute - Dragos Arnautu			
	: 61 Washington St.				Rheinstr. 44/	46		
Postcode/City		rwalk			64283	-	-	
Province/Country	Connecticut	US-United St	tates of America	Province/Country:	Darmstadt, C	iermany		
Year of construction			Inte	erior temperature winter [°C]:	20.0	102222300	summer [°C]:	25.0
No. of dwelling units				s (IHG) heating case [W/m ²]:	12.9	IHG cooling case [W/m ²]:		12.9
No. of occupants	546.0		Specific	capacity [Wh/K per m ² TFA]:	132	Mech	anical cooling:	x
specific building characte	ristics with reference	to the treated floor area	6					
,			0.000 4 .0	1	626220302000	Alternative		
		ed floor area mª	3674.6		Criteria	criteria		Fullfilled? ²
Space heating	Heat	ing demand kWh/(m²a)	0	s	5	•	1	
	F	leating load W/m ²		5	- 10 - I			100
	Cooling & dehu	im. demand kWh/(m²a)	183.0	5	46	176.0	7 F	Netters
space cooling		Contraction of the second second second	The second se	1 .		20.83	98.5%	no
Space cooling	c	Cooling load W/m ^z	20.52				-	
• • • • • • • • • • • • • • • • • • •		Cooling load W/m ²	20.52					Ves
Fn	equency of overheating	ng (> 25 °C) %						
Frequency exce	equency of overheatin essively high humidity	ng (> 25 °C) % / (> 12 g/kg) %	- 0	s	10		Ļ	
Frequency exce	equency of overheating	ng (> 25 °C) % / (> 12 g/kg) %					ł	yes
Fn	equency of overheatin essively high humidity Pressurization te	ng (> 25 °C) % / (> 12 g/kg) %	- 0 0.8	s	10		ł	
Frequency exce Virtightness	equency of overheatin essively high humidity Pressurization te r Energy (PE) I	ng (> 25 °C) % r (> 12 g/kg) % st result n ₅₀ 1/h	- 0 0.8	5	10 1.0	79		


16. Construction Costs

Building owner does not wish to display this information.

22. User's Experiences

Utility data for the first year of the building's operation was obtained for the project. The project is saving approximately 60% in annual energy consumption and is tracking very closely to the PHPP modelled energy demand. See graph below.

Actual Utility Usage

23. Available Research Material / Publications

- <u>https://www.youtube.com/watch?v=7ng1TPjN4_M&feature=youtu.be</u>
- <u>https://www.swinter.com/projects/project/star-garment-innovation-center-sri-lankas-first-passive-house/</u>
- <u>http://jpda.net/projects/star-garment-innovation-center</u>
- <u>https://passivehouse-database.org/#d_6030</u>
- Awards
 - AIA New York 2020 Design Award Sustainability AIA New York names 2020 Design Award recipients : NYREJ
 - 2021 Passive House International Award Awardees & Finalists (passivehouse.com)