
Project Documentation #6369

Passivhaus Passivhaus Passivhaus Institut

Abstract

Sendero Verde, Building B-South
Multi-family Residential Building in New York City, USA

Data of building | Gebäudedaten

Year of construction	2022	Cura en la cationa	4.1						
R-value external wall	41.3	Space heating	kBTU/(ft²yr)						
K-value external wall	hr-ft²-°F/BTU								
D. valva basamant	N/A	Drives and Engage Pengagola (DED)	34.7						
R-value basement	hr-ft²-°F/BTU	Primary Energy Renewable (PER)	kBTU/(ft²yr)						
D value reef	41.3	Concretion of vancuable France	357,207						
R-value roof	hr-ft²-°F/BTU	Generation of renewable Energy	kBTU/yr						
U-value window	Varies	Non removable Dringer, Energy (DE)	46.13						
U-value window	BTU/hr-ft²-°F	Non-renewable Primary Energy (PE)	kBTU/(ft²yr)						
Heat recovery	Varies by location 75% - 86%	Pressurization test n ₅₀	0,4 h ⁻¹						
Special features Rainwater harvesting, PV panels (not considered in PHPP), electric cooking appliances									

Brief Description

Sendero Verde Building B-South

This 85-unit multi-family residential building is one of two Passive House buildings completed in Phase 1 of the Sendero Verde Residential development. The development will ultimately provide 709, 100% affordable housing units, all certified Passive House, in the East Harlem neighborhood of New York City. This development is the result of an RFP titled SustainNYC, supported by The NYC City Council and the NYC Department of Housing, Preservation, and Development (HPD). Passive House certification was a requirement for this RFP.

Building B-South is comprised of a mix of income levels from 90% Area-Median Income (AMI) to units reserved for those formerly experiencing homelessness. The Passive House design offers tenants improved comfort from a typical apartment in NYC. The high-performance windows and glazing and continuously insulated façade offer improved thermal comfort, as well as, better acoustic performance, protecting tenant's from the noise pollution associated with the neighboring MetroNorth regional rail line.

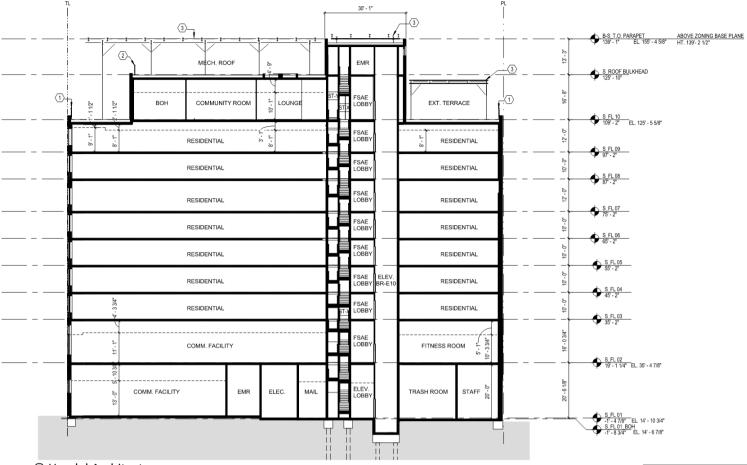
The residences are located on floors 3-9 with the ground and 2nd floor being reserved for lobby and tenant space leased to one of the oldest settlement houses in NYC, Union Settlement, a benefit to the tenants and the broader community. Tenants have access to amenities including a private roof terrace on the tenth floor, a public outdoor courtyard connecting all buildings in the development, laundry, fitness room, computer room, and party room equipped with warming kitchen.

The building podium is a brick façade in keeping with the neighborhood context and the floors above are clad in EIFS, a cost-effective system for maximizing thermal performance. The windows are high-performance uPVC frames with triple-glazed, low-e coated IGUs. The building is served by a low-energy VRF heating and cooling system, and a centralized ventilation strategy with energy recovery ventilation.

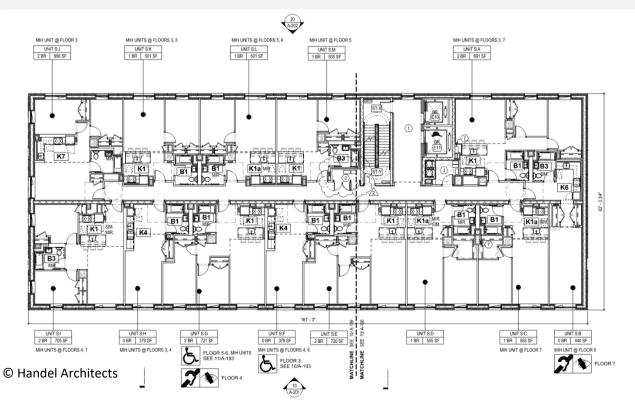
Responsible project participants											
Architect	Handel Architects, Louis Koehl, CPHD, AIA Deborah Moelis, CPHD, AIA Ryan Lobello, CPHD, AIA Handel Architects World-class Architecture										
Implementation planning	-										
Building systems	Cosentini Associates <u>Cosentini Associates - Home</u>										
Structural engineering	Desimone Consulting Engineers <u>DeSimone Consulting Engineers Bridging Science and Humanity (de-simone.com)</u>										
Building physics	-										
Passive House project planning	Steven Winter Associates Home - Steven Winter Associates , Inc. (swinter.com)										
Construction management	L&M Builders L+M Development Partners LLC. Real Estate Development Affordable HousingConstruction - L+M Development Partners LLC. Real Estate Development Affordable Housing (Imdevpartners.com)										
Certifying body											
Passivhaus Institut Darmstadt www.passiv.de											
Certification ID											
6369	Project-ID (<u>www.passivehouse-database.org</u>) Projekt-ID (<u>www.passivhausprojekte.de</u>)										
Author of project documentation											
Passivhaus Institut Darmstadt www.passiv.de											
Date	Signature										
20.11.2023											

1. Exterior Photos

© Handel Architects

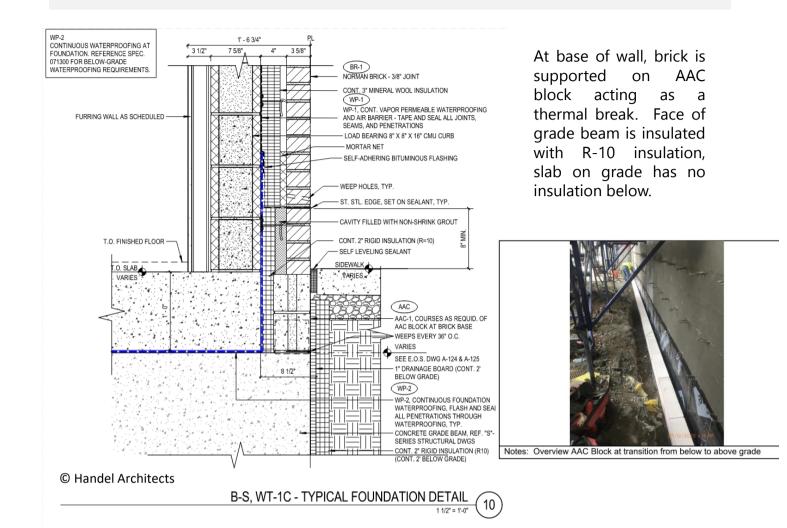

© Handel Architects

2. Interior Photos

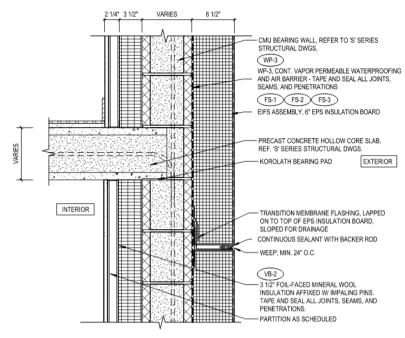

© Handel Architects © Handel Architects

3. Section

© Handel Architects


4. Floor Plan

Page | Seite

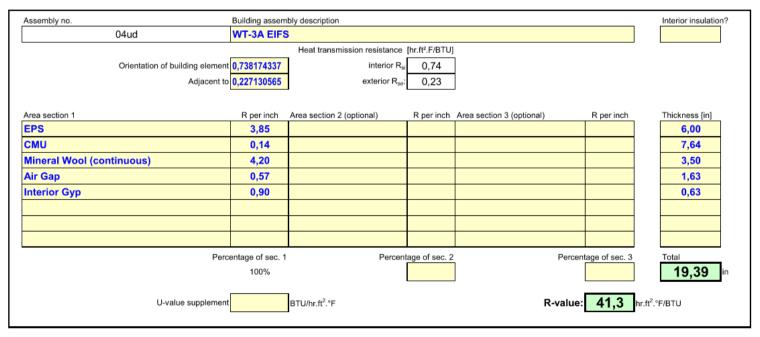

5

5. Floor Slab meeting Exterior Wall

Building data					R-value floor slab/basement ceiling	R_f	1,6	hr.ft².°F/BTU
Area of ground flo	oor slab / basement ceilir	nç A	5277	ft²	TBs floor slab / basement ceiling	Ψ_{B} *I	0,00	BTU/hr.°F
Perimeter length		Р	130,0	ft	R-value floor slab / basement ceilin	g i R _f '	1,6	hr.ft ² .°F/BTU
Charact. dimension	on of floor slab	B'	81,2	ft	Equivalent thickness floor	d_t	1,8	ft
Floor slab type (sele	ect only one)							
x Slab on grade								
Perimeter insulati	ion width/depth	D	8,40	in	Orientation of perimeter insulation	horizontal		
Perimeter insulati	on thickness	d_n	2,00	in	(check only one field)	vertical	х	
Perimeter insulati	on therm. resistance	R per inch	5,000	hr.ft².°F/BTU.in				_
Heated basemer	nt or floor slab complet	tely / partially	below grou	ınd level				
Basement wall he	eight below ground level	z		ft	R-Value wall below ground	R_{wB}		hr.ft².°F/BTU
Unheated basen	nent							
Height abovegrou	und wall	h		ft	R-Value wall above ground	R_W		hr.ft².°F/BTU
Basement wall he	eight below ground level	z		ft	R-Value wall below ground	R_{WB}		hr.ft².°F/BTU
Air change unhea	ated basement	n	0,20	1/hr	R-Value basement floor slab	R_{fB}		hr.ft².°F/BTU
Air flow basemen	t	V		ft³				
Suspended floo	r above a ventilated cra	awl space (at	max. 1.6 ft l	pelow ground)				
R-Value crawl spa	ace	R_{Crawl}		hr.ft².°F/BTU	Area of ventilation openings	εΡ		ft²
Height of crawl sp	pace wall	h		ft	Wind velocity at 10 m height	V	8,9	mph
R-Value crawl sp	ace wall	R_W		hr.ft².°F/BTU	Wind shield factor	f_W	0,05	-
Additional thermal b	oridge heat losses at pe	erimeter			Steady-state fraction	Ψ _{P.stat} *I		BTU/hr.°F
Phase shift		β		Months	Harmonic fraction	Ψ _{P.harm} *I	0,000	BTU/hr.°F

6. Wall Construction

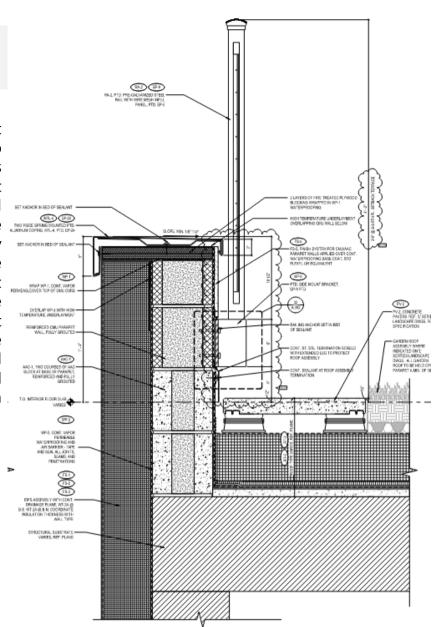
Exterior wall includes 6" EPS insulation on exterior side with 3.5" mineral wool insulation on interior side. Air barrier is the waterproofing membrane behind the EIFS system. There is an additional vapor control layer on the interior side of mineral wool, in the form of foil-facing.


BC TABLE 601 NOTE:
AS REQUIRED FOR TYPE IB CONSTRUCTION, LOAD-BEARING CMU WALLS

B-S, WT-3A, 6" EIFS ASSEMBLY, CMU BACKUP

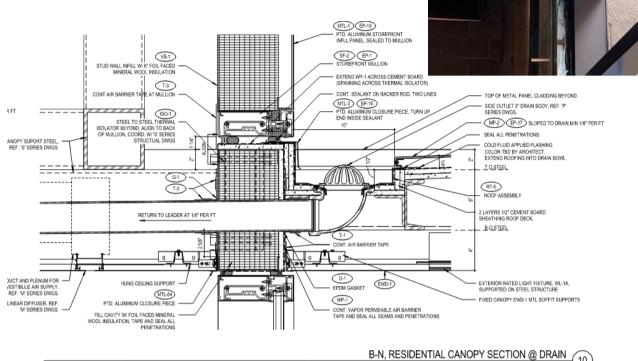
© Handel Architects

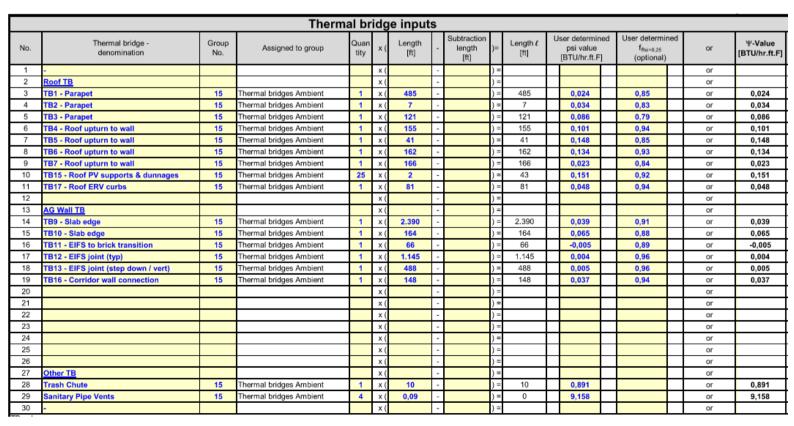
TO MAINTAIN 2 HOUR FIRE-RESISTANCE RATING, REF. CODE AND EGRESS DRAWINGS FOR LOCATIONS WHERE RATING IS NOT REQUIRED.



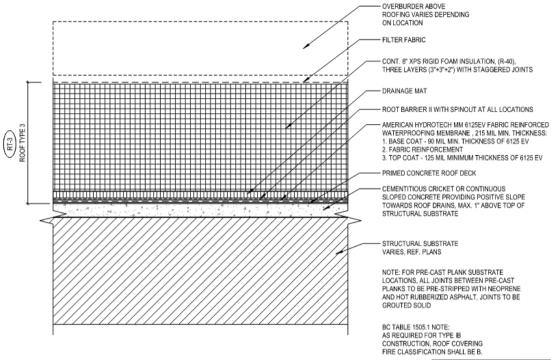
6. Wall Construction (cont.)

The parapet conditions are the largest linear thermal breaks on the project. To isolate these conditions the team has come up with an innovative detail that uses two courses of Autoclaved Aerated Concrete (AAC) masonry units at the base of the parapet wall. This lower density block has a significantly higher R-value than traditional CMU. On top of that block, traditional CMU was installed. The traditional CMU has a higher pull-out strength and was better for mouting the steel guard rails. By mounting the guard rails directly to the face of rthe CMU wall we also avoided any thermal bridging from the steel rail to the roof slab.



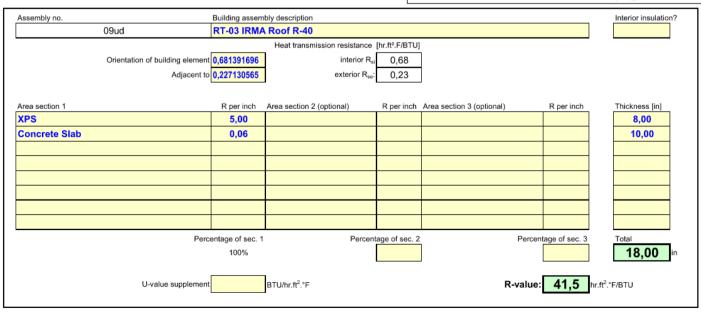


Thermal bridge inputs																
No.	Thermal bridge - denomination	Group No.	Assigned to group	Quan tity	x (Length [ft]		Subtraction length [ft])=	Length ℓ [ft]	User deterr psi valu [BTU/hr.f	е	User determine f _{Rsi=0,25} (optional)	d	or	Ψ-Value [BTU/hr.ft.F]
1	-				х (-) =						or	
2	Roof TB				х (-) =						or	
3	TB1 - Parapet	15	Thermal bridges Ambient	1	х (485	-) =	485	0,024		0,85	\perp	or	0,024
4	TB2 - Parapet	15	Thermal bridges Ambient	1	х (7	-) =	7	0,034		0,83		or	0,034
5	TB3 - Parapet	15	Thermal bridges Ambient	1	х (121	-) =	121	0,086		0,79		or	0,086
6	TB4 - Roof upturn to wall	15	Thermal bridges Ambient	1	х (155	٠) =	155	0,101		0,94		or	0,101
7	TB5 - Roof upturn to wall	15	Thermal bridges Ambient	1	х (41	٠) =	41	0,148		0,85		or	0,148
8	TB6 - Roof upturn to wall	15	Thermal bridges Ambient	1	х (162	,) =	162	0,134		0,93	\top	or	0,134
9	TB7 - Roof upturn to wall	15	Thermal bridges Ambient	1	х (166	-) =	166	0,023		0,84	Т	or	0,023
10	TB15 - Roof PV supports & dunnages	15	Thermal bridges Ambient	25	х (2	-) =	43	0,151		0,92	Т	or	0,151
11	TB17 - Roof ERV curbs	15	Thermal bridges Ambient	1	х (81	-) =	81	0,048		0,94	Т	or	0,048
12					х (-) =					丁	or	
13	AG Wall TB				х (-) =					丅	or	
14	TB9 - Slab edge	15	Thermal bridges Ambient	1	х (2.390	-) =	2.390	0,039		0,91	Т	or	0,039
15	TB10 - Slab edge	15	Thermal bridges Ambient	1	х (164	-) =	164	0,065		0,88	丁	or	0,065
16	TB11 - EIFS to brick transition	15	Thermal bridges Ambient	1	х (66	-) =	66	-0,005		0,89	Т	or	-0,005
17	TB12 - EIFS joint (typ)	15	Thermal bridges Ambient	1	х (1.145	-) =	1.145	0,004		0,96	Т	or	0,004
18	TB13 - EIFS joint (step down / vert)	15	Thermal bridges Ambient	1	х (488	-) =	488	0,005		0,96	Т	or	0,005
19	TB16 - Corridor wall connection	15	Thermal bridges Ambient	1	х (148	-) =	148	0,037		0,94	丁	or	0,037
20					х (-) =					丁	or	
21					х (-) =					丅	or	
22					х (-) =					丅	or	
23					х (-) =					丁	or	
24					х (-) =					丁	or	
25					х (-) =						or	
26					х (-) =					\top	or	
27	Other TB				х (-) =					丅	or	
28	Trash Chute	15	Thermal bridges Ambient	1	х (10	-) =	10	0,891			十	or	0,891
29	Sanitary Pipe Vents	15	Thermal bridges Ambient	4	х (0,09	-) =	0	9,158			十	or	9,158
30			-		х (-) =					十	or	


6. Wall Construction (cont.)

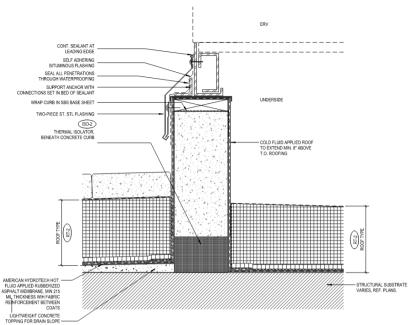
Steel canopies were thermally broken with Schock brand steel-to-steel thermal isolators. These connections penetrated the curtain wall and were wrapped on all sides in mineral wool insulation.

7. Roof Construction



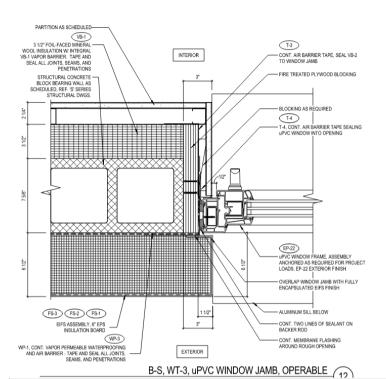
RT-3 - IRMA ROOF ASSEMBLY, REF. SPEC SE

Roof assembly is comprised of 8" XPS insulation with various overburdens (green roof, pedestal pavers, interlocking pavers).



Notes: Overview XPS roof insulation in progress

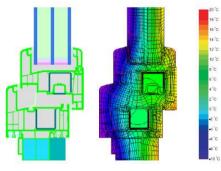
7. Roof Construction (cont.)


Below large equipment like the generators and ERUs the team specificed the use of thermally broken curbs. This detail was achieveed using a structural plastic thermal isolator in between a cast in place concrete curb and the precast roof desk with topping slab. This detail allows for simple roofing terminations and waterproofing continuity.

	Thermal bridge inputs															•
No.	Thermal bridge - denomination	Group No.	Assigned to group	Quan tity	x (Length [ft]		Subtraction length [ft])=	Length ℓ [ft]	User determin psi value [BTU/hr.ft.F		User determin f _{Rsi=0,25} (optional)	ned	or	Ψ-Value [BTU/hr.ft.F]
1	-				х (-) =						or	
2	Roof TB				х (-) =						or	
3	TB1 - Parapet	15	Thermal bridges Ambient	1	х (485	-) =	485	0,024		0,85		or	0,024
4	TB2 - Parapet	15	Thermal bridges Ambient	1	х (7) =	7	0,034		0,83		or	0,034
5	TB3 - Parapet	15	Thermal bridges Ambient	1	х (121) =	121	0,086		0,79		or	0,086
6	TB4 - Roof upturn to wall	15	Thermal bridges Ambient	1	х (155) =	155	0,101		0,94		or	0,101
7	TB5 - Roof upturn to wall	15	Thermal bridges Ambient	1	х (41	-) =	41	0,148		0,85		or	0,148
8	TB6 - Roof upturn to wall	15	Thermal bridges Ambient	1	х (162	-) =	162	0,134		0,93		or	0,134
9	TB7 - Roof upturn to wall	15	Thermal bridges Ambient	1	х (166	-) =	166	0,023		0,84		or	0,023
10	TB15 - Roof PV supports & dunnages	15	Thermal bridges Ambient	25	х(2	-) =	43	0,151		0,92		or	0,151
11	TB17 - Roof ERV curbs	15	Thermal bridges Ambient	1	х (81	-) =	81	0,048		0,94		or	0,048
12					х (-) =						or	
13	AG Wall TB				х (-) =						or	
14	TB9 - Slab edge	15	Thermal bridges Ambient	1	х (2.390	-) =	2.390	0,039		0,91		or	0,039
15	TB10 - Slab edge	15	Thermal bridges Ambient	1	х (164	-) =	164	0,065		0,88		or	0,065
16	TB11 - EIFS to brick transition	15	Thermal bridges Ambient	1	х (66	-) =	66	-0,005		0,89		or	-0,005
17	TB12 - EIFS joint (typ)	15	Thermal bridges Ambient	1	х (1.145	-) =	1.145	0,004		0,96		or	0,004
18	TB13 - EIFS joint (step down / vert)	15	Thermal bridges Ambient	1	х (488	-) =	488	0,005		0,96		or	0,005
19	TB16 - Corridor wall connection	15	Thermal bridges Ambient	1	х (148	-) =	148	0,037		0,94		or	0,037
20					х (-) =						or	
21					х (-) =						or	
22					х (-) =						or	
23					х (-) =						or	
24					х (-) =						or	
25					х (-) =						or	
26					х (-) =						or	
27	Other TB				х (-) =						or	
28	Trash Chute	15	Thermal bridges Ambient	1	х (10	-) =	10	0,891				or	0,891
29	Sanitary Pipe Vents	15	Thermal bridges Ambient	4	х (0,09	-) =	0	9,158				or	9,158
30	-				х (-) =						or	

8. Fenestration

Window frames												
		U _r Value										
ID	Description	left	right	bottom	above							
		BTU/hr.ft ² °F	BTU/hr.ft ² °F	BTU/hr.ft ² °F	BTU/hr.ft ² °F							
01ud	Fixed (L/R) uPVC D	0,174	0,174	0,185	0,174							
02ud	Operable (L/R) uPVC D	0,206	0,206	0,209	0,206							
03ud	SF window - Kawneer 1600 UT fiberglass PP	0,910	0,910	0,850	0,850							
04ud	SF door - Kawneer 350T Insulpour Thermal Medium Stile	1,250	1,250	1,250	1,250							
05ud	Fixed (single) Aluminum C	0,546	0,546	0,544	0,544							
06ud	Operable (single) Aluminum C	0,546	0,546	0,544	0,544							
07ud	Operable (single) uPVC D	0,206	0,206	0,209	0,206							
08ud	Fixed (single) uPVC D	0,174	0,174	0,185	0,174							
09ud	Terrace door - Kawneer 2000T	0,850	0,850	0,850	0,850							
10ud												


				,	Visible Light			Solar E	Thermal Properties						
Make-up Name		Glass 1 & Coating					Glass 2 & Coating	Transmitta nce	Reflec	tance	Transmitta nce	Reflectanc e	Solar Factor	Secondary Heat Transfer	U-Value
				Visible (τ _V %)	ρ _v % out	ρ _V % in	Solar (τ _e %)	ρ _e % out	(g%)	(q _i)	U _g W/m²-K [3 decimals]				
CG 44.2 x 18 : 6 CG		Guardian ExtraClear (CE)	ClimaGuar d® 1.0+ (CE) on Guardian ExtraClear (CE)	62.5	24.1	24.3	31.3	36.2	36.9	5.7	0.496				
culation Star	ndard: EN 4	10:2011 / EN	673:2011												
G 44.2 x 18	x 4 x 16 x	6 CG													
					0										
,					Ou	tdoors					_				
GLASS 1		ExtraClear (C = 5/32" (4mr				#1 #2									
TERLAYER 1		r 0.76mm (CE													
GLASS 2		ExtraClear (C = 5/32" (4mr				#3 #4 Clima	Guard® 1.0+ ((CE)							
GAP 1	10)% Air, 90% A	Argon, 18mm								7				
GLASS 3		ExtraClear (C = 5/32" (4mr				#5 #6									
GAP 2	10)% Air, 90% /	Argon, 16mm												
GLASS 4	Guardian ExtraClear (CE) #7 ClimaGuard® 1.0+ (CE) Thickness = 1/4* (6mm) #8														
	Total Unit (Nominal) = 52.762 mm Slope = 90°														
	Estimated	Nominal Gla	zing Weight:	43.6 kg/m ²											
					l	doors									

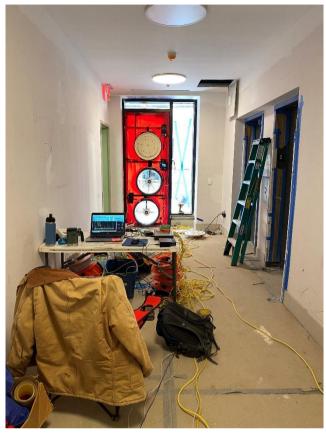
SUPERA 83 PASSIVE PROFILE

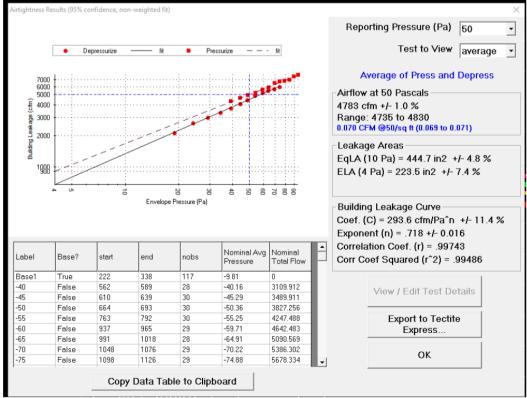
INTUS achieves Passive House Institute (PHI) Certification through our thermally efficient Supera 83 Passive profile and high performance triple glazing. By using this method versus expensive super insulated profiles. INTUS is able to affordably achieve

method versus expensive super insulated profiles, INTUS is able to affordably achieve PHI Certification for any climate zone in the U.S., Central America, and areas of Canada. With its steel reinforced profile, Supera 83 Passive is stronger structurally and can achieve certification at greater heights.

Calculation Model

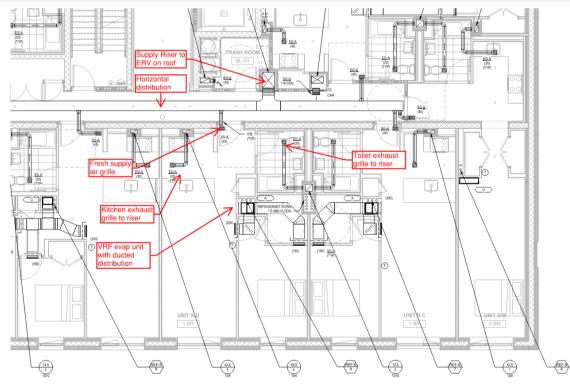
Model Isothermal Mode


https://database.passivehouse.com/en/components/details/windaw/intus-windaws-supera-83-passive-1495ws@4


9. Airtightness

Guarded blower door tests were performed by Steven Winter Associates (SWA) after the first residential floor was fully sealed. SWA performed a final blower door test upon substantial completion of the building.

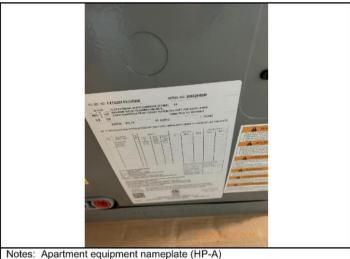
Airtightness is provided by continuous vapor-permeable air barrier at drainage plane of all exterior wall assemblies (brick and EIFS). These tie into the roofing membrane at all roofs and into the concrete floor slab which acts as the c


10. Ventilation Unit

There are multiple energy recovery ventilation units on the project. All provided by Swegon and equipped with MErV 13 filtration.

Ventilation units with heat recovery													
	Recommended specifications to start planning: Frost protection: Yes; Humidity recovery: Yes	75 %		0,76									
ID	Description	Effective heat recovery efficiency	Humidity recovery efficiency	Electric efficiency									
	User defined area	%	%	W/cfm									
01ud	SWEGON GOLD RX 35	86,0%	69,5%	0,75									
02ud	SWEGON GOLD RX 11	75,0%	56,0%	0,35									
03ud	Exhaust only	0,0%	0,0%	0,72									
04ud	Trash room ERV - Swegon GOLD ARX 05	86,5%	67,5%	0,54									

11. Ventilation Distribution


Air supply is delivered to each apartment near the entrance. From here it is pulled into the VRF evaporator return and blown via ductwork to the living spaces (living rooms and bedrooms). Return air is extracted from kitchens and bathrooms.

Ventilation units are centrally located on the roof and delover air to the apartments via large vertical ducts connecting to horizontal ducts running in each corridor. These ducts branch into indivudal aprtments.

12. Heating and Cooling

Heating and cooling is provided by a low-energy Daikin VRF system. Condensers are located on the roof and evaporator units are located inside the apartments in closets. These indoor units duct air from a central location to all habitable rooms. Refrigerant is run in vertical risers from condensers to evaporators.

13. Building Costs

It is estimated that pursuing Passive Hosue certification for this project resulted ina 6.5% premium over the cost of a comparable building designed to meet local energy and building codes.

14. Literature

15. PHPP Summary

35884-35968_PHI_PH_20220825_DA

Passive House Verification Building: Sendero Verde - Building B South E 112th Street & Park Ave Street: Postcode/City: 10029 **New York City** US-United States of America Province/Country: Unites States Building type: Residential Climate data set: US0055b-New York Climate zone: 4: Warm-temperate Altitude of location: 16 ft Home owner / Client: L+M Development Street: 1865 Palmer Ave #203 Postcode/City: 10538 Larchmont **US-United States of America** Province/Country: New York Architecture: Handel Architects Mechanical engineer: Cosentini Consulting Engineers Street: 2 Pennsylvania Plaza Street: 120 Broadway, 6th Floor Postcode/City: 10271 **New York City** Postcode/City: 10121 **New York City** Province/Country: NY US-United States of America Province/Country: NY **US-United States of America** Energy consultancy: Steven Winter Associates Certification: Passive House Institute Street: 307 7th Avenue, Suite 1701 Street: Rheinstr. 44/46 Postcode/City: 10001 **New York City** Postcode/City: 64283 Province/Country: NY **DE-Germany** US-United States of America Province/Country: Darmstadt, Germany 77,0 Year of construction: Interior temp. summer [°F]: 2020 Interior temperature winter [°F]: 68.0 IHG cooling case [BTU/(hr.ft²)] No. of dwelling units: Internal heat gains (IHG) heating case [BTU/(hr.ft²)]: 0,93 1,24 No. of occupants: 197.0 Specific capacity [BTU/F per ft2 TFA]: 23.2 Mechanical cooling Specific building characteristics with reference to the treated floor area Alternative 54900 Treated floor area ft² Fullfilled?2 Criteria 4,10 Heating demand kBTU/(ft²yr) Space heating 4.75 yes 4,43 Space cooling Cooling & dehum. demand kBTU/(ft²yr) 6,66 6,66 yes 0,0 Frequency of excessively high humidity (> 0.012 lb/lb) % 10 yes 0.4 Airtightness Pressurization test result n₅₀ 1/hr 0.6 yes Moisture protection yes 0,79 Smallest temperature factor f_{Rsi=1.42 hr.ft².F/BTU} -0,65 ves Thermal Comfort All requirements fulfilled? yes yes Non-renewable Primary Energy (PE) PE demand kBTU/(ft²yr) 46.13 58,50 yes Empty field: Data missing; '-': No requirem I confirm that the values given herein have been determined following the PHPP methodology and based on the characteristic Passive House Classic? yes values of the building. The PHPP calculations are attached to this verification. Task: First name: Surname Dragos Arnautu

Certificate ID

25.08.22

Darmstadt

Page | Seite 16

City: