
CERTIFICATE

Certified Passive House Component

ID: 2451bc03 valid until 31. December 2026

Passive House Institute
Dr. Wolfgang Feist
64342 Darmstadt
GERMANY

Category Balcony connection

Type Cantilevered

Manufacturer Thermal Breaks Ltd

CM23 4TR Bishops Stortford

UNITED KINGDOM

Product name **TekTherm™ AK-FR**

This certificate was awarded based on the following criteria for the climate zone

Hygiene and comfort criterion

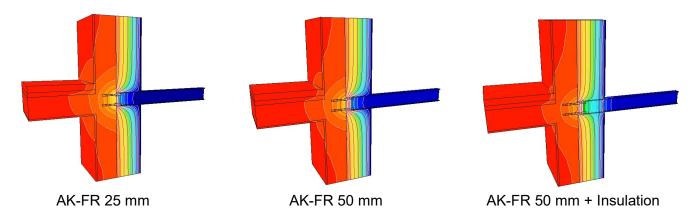
The minimum temperature factor of the interior surfaces is $f_{Rsi=0.25m^2K/W} \ge 0.86$

Energy criterion

The linear thermal bridge loss coefficient is $\Psi \leq 0.25 \text{ W/(mK)}$

Efficiency criterion

The heat losses depending on the possible load bearing do not exceed Eff.t. ≤ 10.00 W/(kNmK)



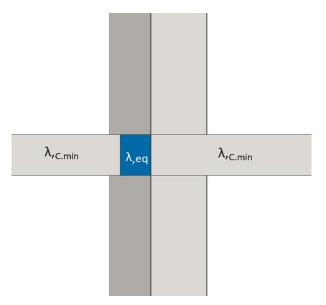
Thermal Breaks Ltd

11 Thorley Fields Business Park CM23 4TR Bishops Stortford UNITED KINGDOM 0800 6444 949 | www.thermal-breaks.group

Determined values

Product	h [mm]	d [mm]	λ _{,C.min} [W/(mK)]	λ _{,eq} [W/(mK)]	ψ _{,wв} [W/(mK)]	m _{Rd,y} [kNm/m]	f _{Rsi} [-]	Eff.t. [W/(kNmK)]	Efficiency class
AK-FR 25 mm - 1 / m	140	25	3.0	0.05	0.219	-34.8	0.92	6.30	phC
AK-FR 2 x 25mm - 1 / m	140	50	3.0	0.066	0.162	-34.8	0.94	4.70	phB
AK-FR 2 x 25mm - 1 / m + Ins. 035	140	50	3.0	0.037	0.112	-34.8	0.95	3.20	phB

 $\lambda_{C.min}$ = Min. conductivity reinf. Concrete


 λ_{eq} = Equivalent conductivity balcony connection

 Ψ_{WB} = Linear thermal bridge coefficient

 f_{Rsi} = Temperature-factor Eff.t. = Efficiency-value $m_{Rd.v}$ = Design resistance

The simulations have been conducted with an HEA140 steel beam, with a distance of 1 m. Larger distances reduce the equivalent linear thermal bridges. The stated values assume the installation of 1 anchor per meter. The thermal seperation element has a thermal conductivity of 0.22 W/(mK).

Using the equivalent thermal conductivity λ_{eq} , linear thermal bridge loss coefficients for other connection situations can be determined with 2D FEM simulations. The minimum thermal conductivity of the reinforced concrete $\lambda_{C.min}$ of the balcony is to be used for the cantilever slab and the false ceiling. The equivalent rectangular geometry of the balcony connection element has the dimensions of height h and width d, as well as the thermal conductivity λ_{eq} .

Notice

The thermal bridge loss coefficients can be approximately linearly interpolated. Calculations and boundary conditions according to the criteria and algorithms "Certified Passive House Components - Balcony Connection, Version 2.1"