
CERTIFICATE

Certified Passive House Component

Component-ID 1067sl03 valid until 31st December 2025

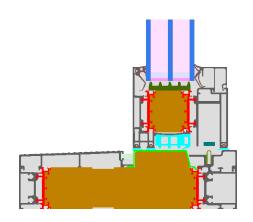
Passive House Institute
Dr. Wolfgang Feist
64283 Darmstadt
Germany

Category: Sliding Door

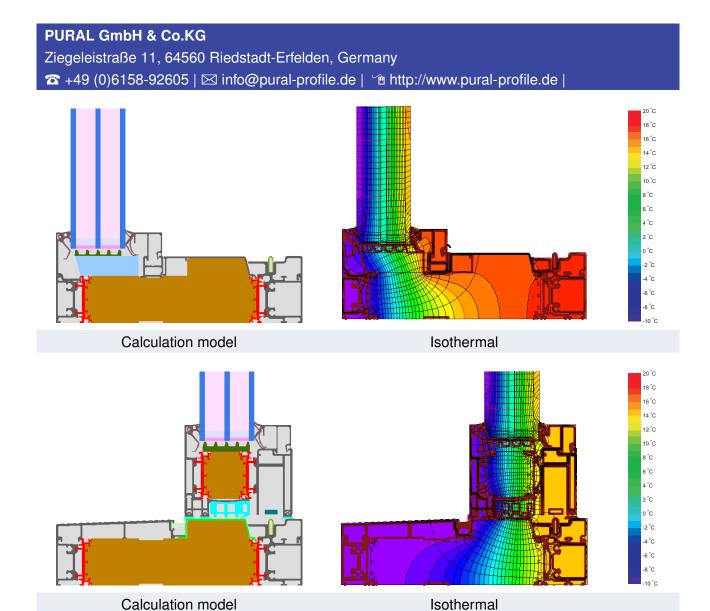
Manufacturer: PURAL GmbH & Co.KG,

Riedstadt-Erfelden,

Germany


Product name: HST eco230

This certificate was awarded based on the following criteria for the cool, temperate climate zone


 $Comfort \quad \textit{U}_{\textit{SL}} \text{= } 0.80 \quad \leq \quad 0.80 \, \text{W/(m}^2 \, \text{K)}$

 $U_{SL,installed} \leq 0.85 \text{ W/(m}^2 \text{ K)}$ with $U_q = 0.70 \text{ W/(m}^2 \text{ K)}$

Hygiene $f_{Rsi=0.25}$ \geq 0.70

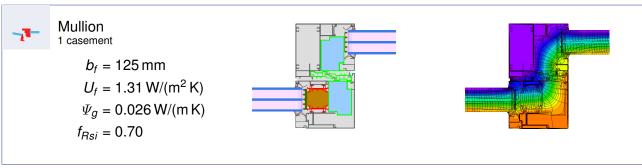
Description

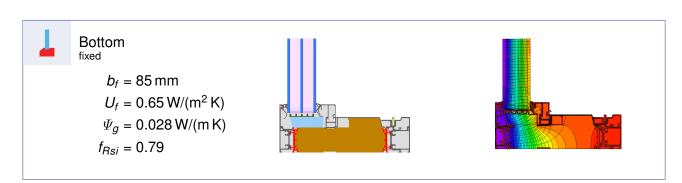
Aluminum frame with load bearing core from rigid PU foam (0,051 W/(mK)) and aditional insulation 0.03, 0.05 and 0,06 W/(mK). Used Pane: 51 mm (5/18/5/18/5), intersection of the glass: 15 mm.

Explanation

The window U-values were calculated for the test window size of $2.40 \,\mathrm{m} \times 2.50 \,\mathrm{m}$ with $U_g = 0.70 \,\mathrm{W/(m^2 \, K)}$. If a higher quality glazing is used, the window U-values will improve as follows:

Glazing	$U_g =$	0.70	0.66	0.60	0.54	W/(m ² K)
		\downarrow	\downarrow	\downarrow	\downarrow	
Window	$U_W =$	0.80	0.76	0.72	0.67	W/(m ² K)


Transparent building components are classified into efficiency classes depending on the heat losses through the opaque part. The frame U-Values, frame widths, thermal bridges at the glazing edge, and the glazing edge lengths are included in these heat losses. A more detailed report of the calculations performed in the context of certification is available from the manufacturer.

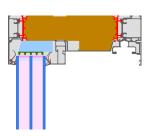

The Passive House Institute has defined international component criteria for seven climate zones. In principle, components which have been certified for climate zones with higher requirements may also be used in climates with less stringent requirements. In a particular climate zone it may make sense to use a component of a higher thermal quality which has been certified for a climate zone with more stringent requirements.

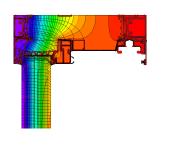
Further information relating to certification can be found on www.passivehouse.com and passipedia.org.

Frame value	es		Frame width <i>b_f</i> mm	<i>U</i> -value frame <i>U_f</i> W/(m² K)	Ψ -glazing edge Ψ_g W/(m K)	Temp. Factor f _{Rsi=0.25} [-]
Mullion 1 casement	(1M1)	1	125	1.31	0.026	0.70
Bottom fixed	(FB1)	1	85	0.65	0.028	0.79
Top fixed	(FH1)	T	87	0.64	0.028	0.75
Lateral fixed	(FJ1)	ı	85	0.64	0.027	0.79
Тор	(OH1)	T	162	0.79	0.026	0.79
Lateral	(OJ1)	11	133	0.76	0.026	0.78
Threshold	(OT2)		150	0.91	0.026	0.75

Spacer: SWISSPACER Ultimate Secondary seal: Polysulfide

3/6 HST eco230

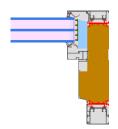

Top fixed

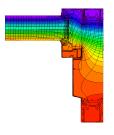

 $b_f = 87 \,\mathrm{mm}$

 $U_f = 0.64 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.028 \, \text{W/(m K)}$

 $f_{Rsi}=0.75$

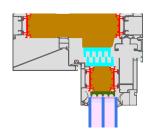

Lateral fixed

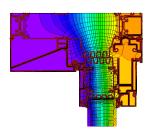

 $b_f = 85 \, \text{mm}$

 $U_f = 0.64 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.027 \, \text{W/(m K)}$

 $f_{Rsi} = 0.79$

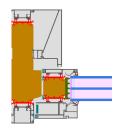

Top

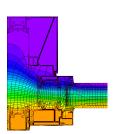

 $b_f = 162 \, \text{mm}$

 $U_f = 0.79 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0.79$

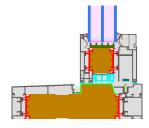

Lateral

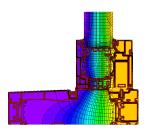

 $b_f = 133 \, \text{mm}$

 $U_f = 0.76 \, \text{W/(m}^2 \, \text{K)}$

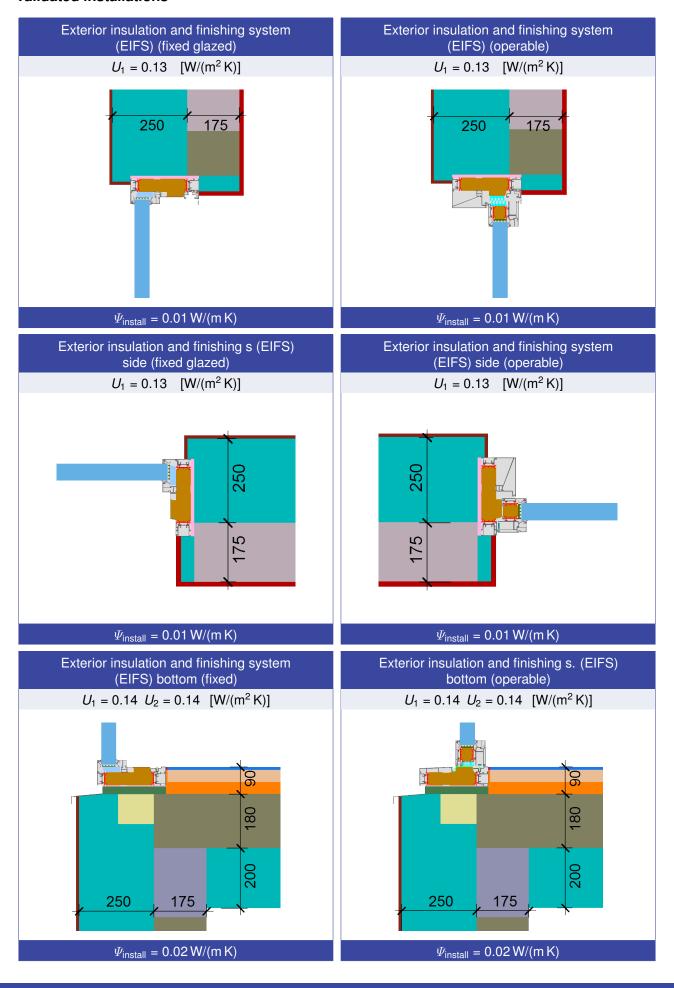
 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0.78$


Threshold


 $b_f = 150 \, \text{mm}$

 $U_f = 0.91 \text{ W/(m}^2 \text{ K)}$


 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi} = 0.75$

Validated installations

5/6 HST eco230

