PROJECT DOCUMENTATION

ABSTRACT

STANDALONE RESIDENTIAL FAMILY HOME IN OHOKA, CHRISTCHURCH, NEW ZEALAND

BUILDING DATA

Year of Construction U-Value External	2018/19 0.200	Space Heating	25		
Wall	W/m ² K		kWh/(m²a)		
U-Value floor	0.147	Primary Energy	55		
	W/m ² K	Demand (PER)	kWh/(m²a)		
U-Value roof	0.133	Generation of	0		
	W/m ² K	Renewable Energy	kWh/(m²a)		
U-Value windows	0.94	Non-renewable	126		
	W/m ² K	Primary Energy (PE)	kWh/(m²a)		
Heat Recovery	81.5%	Pressurization test	0.3		
		n ₅₀			
Special features	Prefabricated wall elements				
	http://www.prefabr prefabrication	z.com/News/gibbons-famil	y-home-precise-		

BRIEF DESCRIPTION

The family home was designed for the family of Simon Gibbon who has been part of the Proclima family since the product got introduced into New Zealand about 10 years ago.

Having been exposed to high performance housing market for a long period of time naturally the choice to build a Passive House was a given and construction methods were chosen to accommodate the use of Proclima products. The timber framing method using a service cavity had been proven to be most effective in the New Zealand market, for cost and constructability, for external wall and roof. The insulation values that can be achieved are generally sufficient for the New Zealand climate and have been the popular choice for many other high-performance houses.

The building is designed around the horse paddocks and hence has a barn style verandah around the East and Northern elevations facing the property entrance and paddocks. The West elevations include the garage, boat shed and entrance area with limited window openings to prevent overheating during the afternoons.

Architecture

Implementation Planning

Building Systems

Structural Engineer Building Physics

Passive House Planning

Construction Management Certifying Body Wyatt and Grey Architects Ltd https://www.wyattgrayarchitects.nz Wyatt and Grey Architects Ltd https://www.wyattgrayarchitects.nz Fantech (NZ) Ltd https://www.fantech.com.au

BEO Ltd https://beo.co.nz BEO Ltd https://beo.co.nz L Johnston Construction Ltd

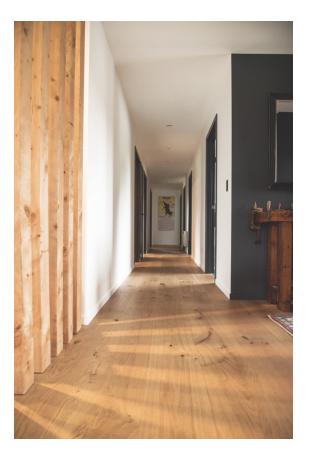
Sustainable Engineering Ltd https://sustainableengineering.co.nz

Certification ID

5299

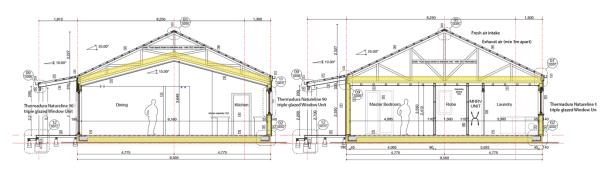
https://passivehouse-database.org/#d_5299

AUTHOR OF PROJECT DOCUMENTATION


BEO Ltd https://beo.co.nz

Signature

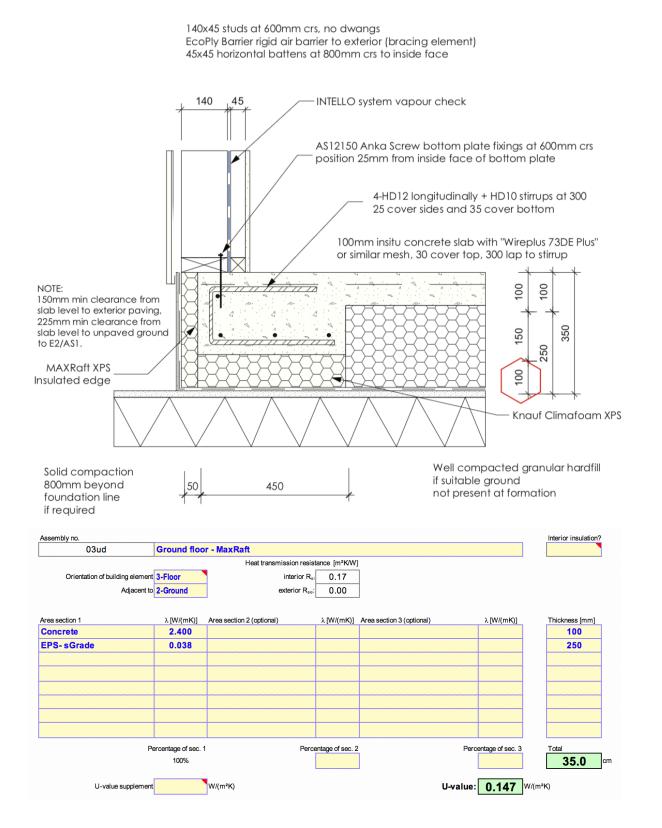
1. BUILDING PHOTOS



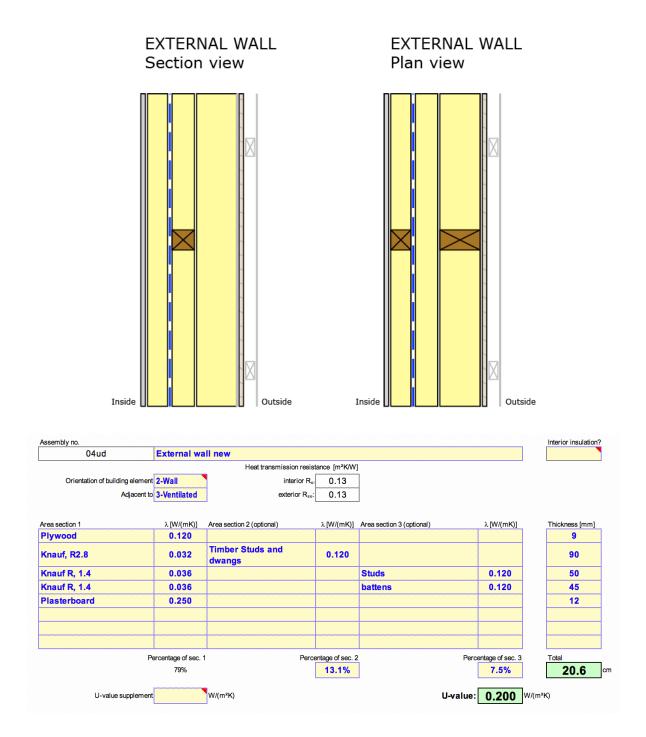
2. INTERIOR PHOTOS



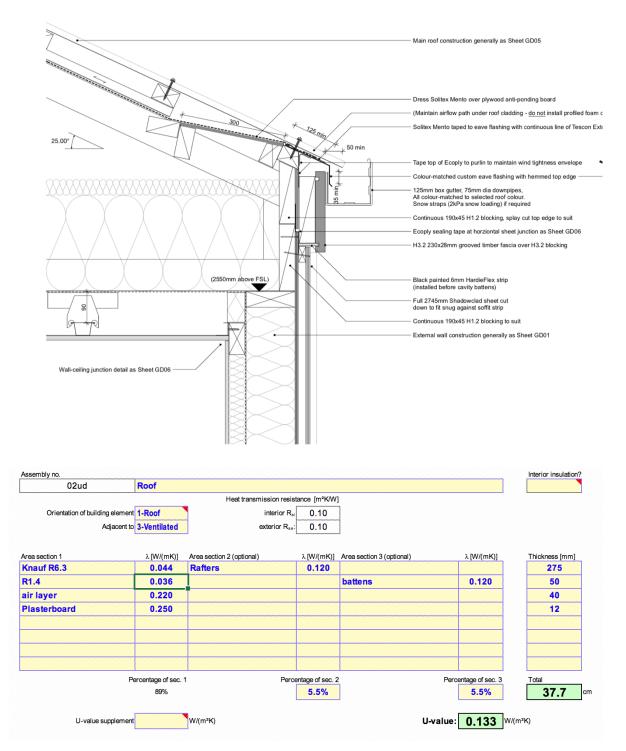
3. SECTION



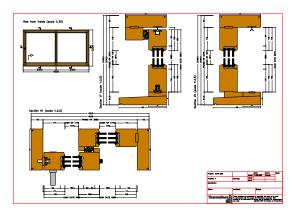
4. PLAN

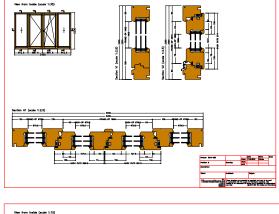

5. FOUNDATION AND FLOOR CONSTRUCTION

MAXRaft Slab Edge Detail 1:10

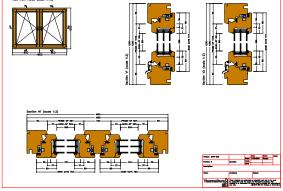


6. EXTERNAL WALL

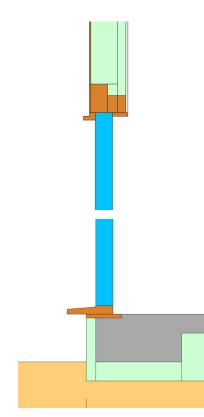

During construction the project owner decided to change the external wall insulation from a 140mm thick insulation to a 90mm, plus a 50mm insulation product.

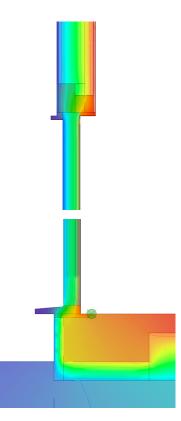


7. ROOF CONSTRUCTION



8. WINDOWS AND WINDOW INSTALLATION





Window Supplier	Thermadura
Frame description	Natureline 90
Frame U-Value	1.12
Glass description	Silverstar EN2 plus
	4-20-4-20-4 90% Ar
Glass U-Value	0.55
Glass g-Value	0.53

Window Installation Head and Sill, Foundation edge

9. AIRTIGHT ENVELOPE

The airtight envelope was tested several times during construction by the building owner himself and through BEO Ltd, while filming the construction process through CHH Woodproducts as the main supplier of the product. A final Test was conducted on 12 August 2018 through BEO Ltd.

n₅₀ during Blower Door Test at 50Pa (AS/NZS 9972:2015) **0.34** h⁻¹

AIRTIGHT CONCEPT

FLOOR EXTERNAL WALLS ROOF/CEILING Concrete Foundation and floor slab Proclima Intello[®] Proclima Intello[®]

CONNECTION DETAILING FOR AIRTIGHT CONCEPT

CONNECTION FROM/TO	CEILING/ROOF	EXTERNAL WALL	FLOOR	WINDOWS/DOORS
CEILING/ROOF		Proclima Tescon Tape Intello-Intello		
EXTERNAL WALL	Proclima Tescon Tape Intello- Intello	Proclima Tescon Tape Intello-Intello	Prcolima Orcon Glue Intello – Concrete	Proclima Tescon Tape Intello-frame
FLOOR		Proclima Tescon Tape Intello-Intello		Prcolima Orcon Glue and Proclima Tescon Tape Frame – Concrete
WINDOWS/DOORS		Proclima Tescon Tape Intello-frame	Prcolima Orcon Glue and Proclima Tescon Tape Frame - Concrete	

10. VENTILATION SYSTEM

The Zehnder Comfoair 350 balanced ventilation with heat recovery is installed central inside the building. The distribution ducting is installed in the ceiling cavity inside the Intello airtight membrane, see graphic below. The heat recovery efficiency was calculated to be at 81.5% at an electric efficiency of 0.29Wh/m³.

11. VENTILATION DISTRIBUTION

Ceiling Mounted supply air valve

Wall mounted extract air grill

Wall mounted supply air grill

¢

⊒[

비

12. HEATING

A 1000W manual convective heater was installed to boost potential peak demand during winter. Model LHZ Crystal, CY10.

The heat load was calculated to be low enough for the supply air to be sufficiently heating the building otherwise.

13. DOMESTIC HOT WATER

The Stiebel Eltron WWK 302 H Hot water heat pump was installed external of the Building with insulated supply ducting into the building.

The installation outside is not ideal for storage and distribution heat losses, with storage taking 2/3 and distribution 1/3 of the total energy demand for domestic hot water, despite the insulation.

14. BUILDING COST

No data has been submitted by the building owner.