

THE BARGE

Passivhaus EnerPHit Project Documentation

THE BARGE

Project characteristics

Year of construction	2017 - 2019	Space Heating	28kWh/(m²a)
U Value External Walls	Thermal improvement to existing external solid wall constructions are limited by dew point calculations and thus the primary performance has been achieved at 0.302 to 0.348 W/(m²K) New external wall construction 0.14 W/(m²K)	Treated Floor Area	125m²
U Value Flat Roof	New construction 0.119W/(m ² K)	Air Pressure test @ 50 Pa	0.43ac/hr
U Value Pitched Roof	Existing cottage renovation 0.134w/9m²K)	Primary Energy Renewable	119kWh/(m²a)
U Value Windows	0.86W/(m ² K)	Primary Energy Non renewable	122kWh/(m²a)

Project Description

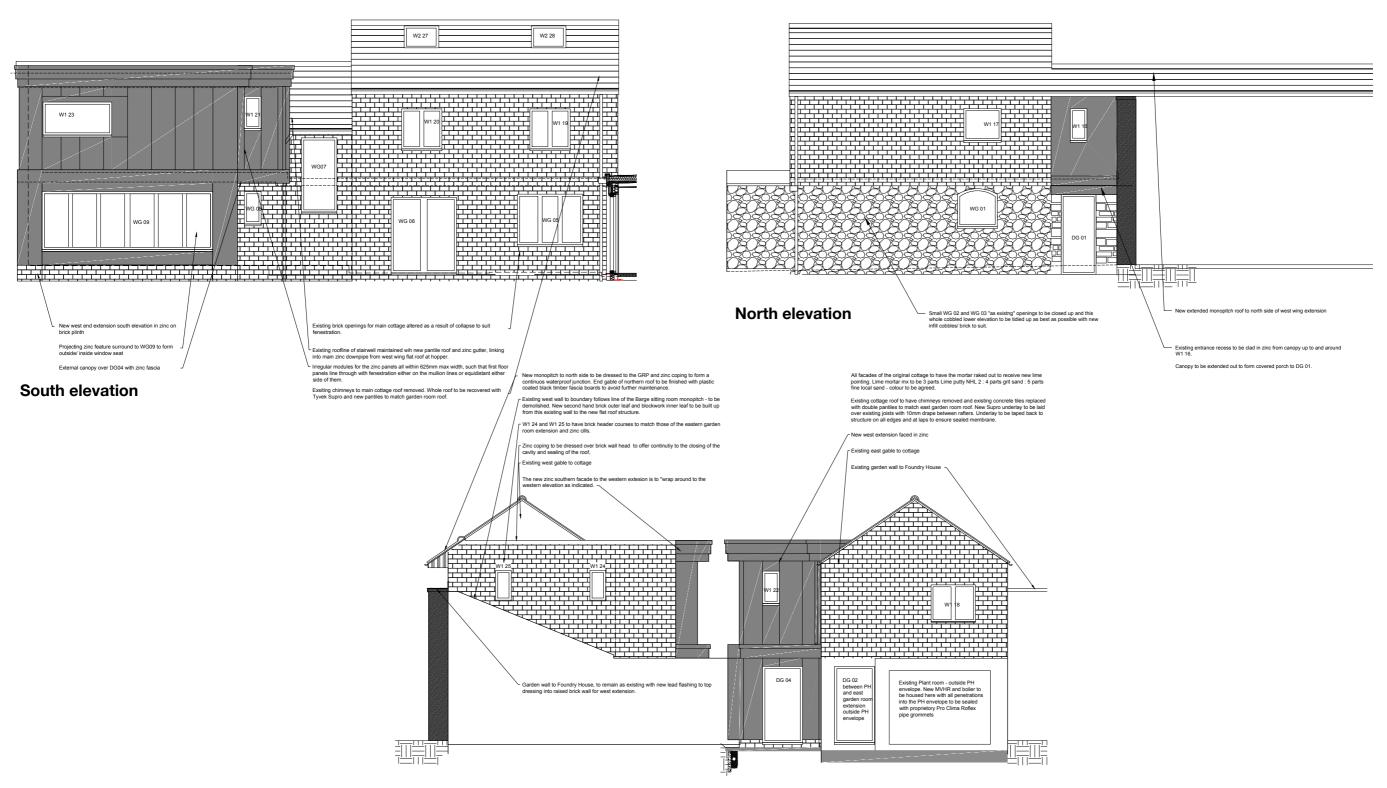
The Barge: circa 1810 solid wall brick cottage, south facing to a walled garden within the City of Ripon, adjacent to the Canal Basin.

The cottage was a two storey two up two down and had a 1970's extension to the west which included family bathroom, stairwell and mono-ridge sitting room. It was in very poor condition with considerable damp, mould growth, draughts and poor thermal value.

The property has undergone a deep retrofit taking it back to a carcass of external walls and roof rafters, before restoring it to achieve Passivhaus EnerPhit by components with a target Heating demand

Project Participants

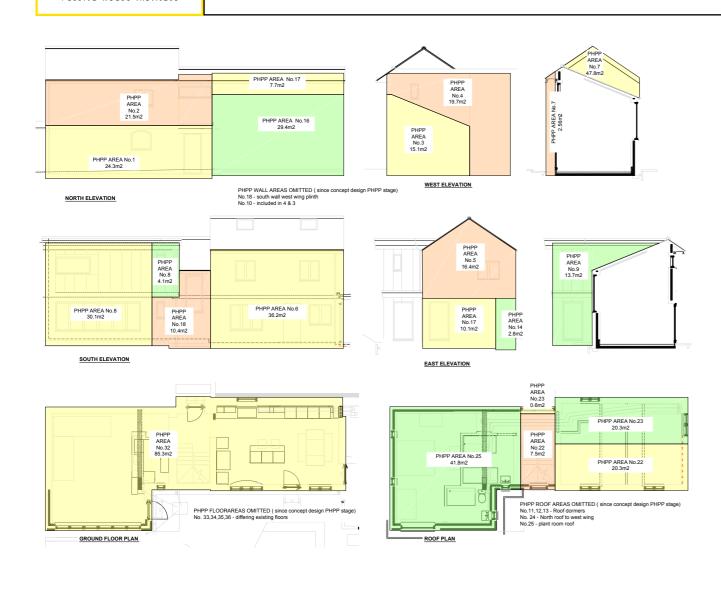
Architect; Certified Passivhaus Designer & Self Builder Claire Jamieson Phi Architecture

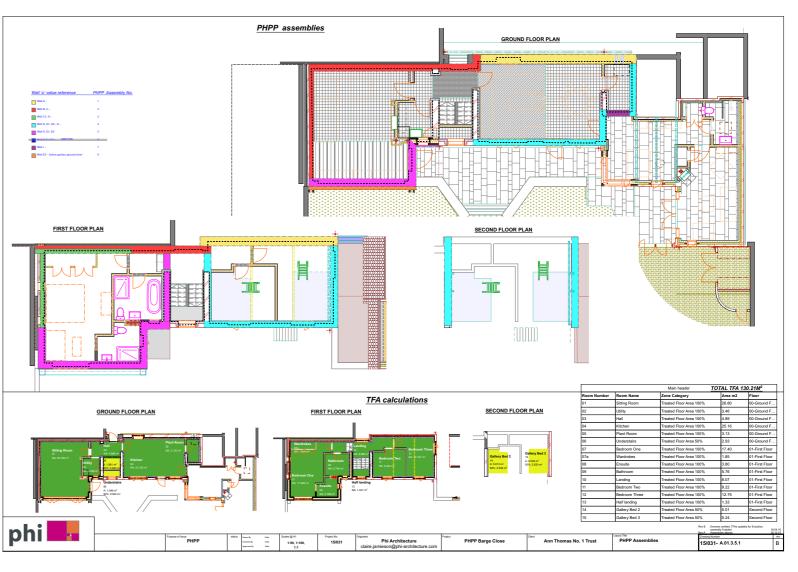

Certifier Kym Mead Mead Consulting

Heating and Domestic hot water Nick Roberts NCR Heating and Plumbing

THE BARGE

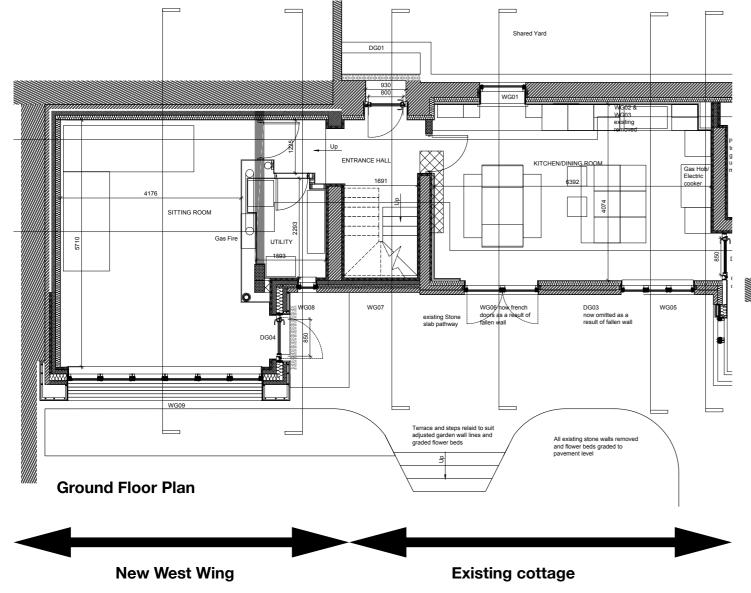
Elevations

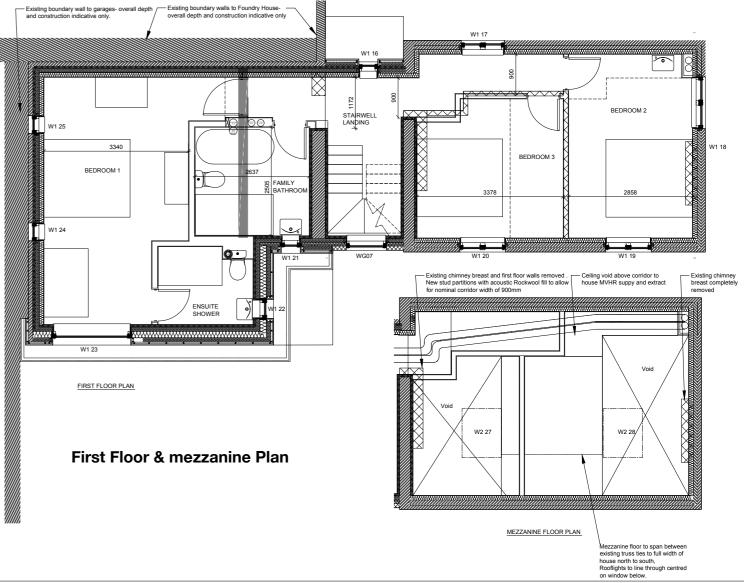

West elevation adjoining party wall


East elevation adjoining garden room and party walls

THE BARGE

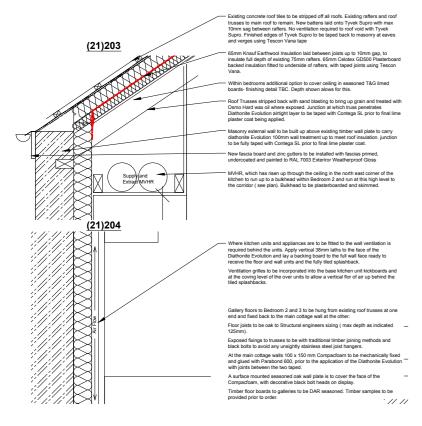
Surface Areas and Assemblies





THE BARGE

Plans



THE BARGE

Walls

Exterior wall construction - water vapour permeable approach

Original cottage

Solid walls stripped back to bare brick and cobble, with all layers of plasterboard, plaster, paint and wall paper removed.

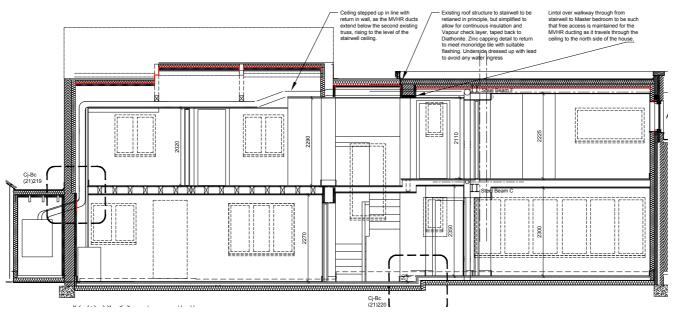
Chimney breasts removed and complete internal face given a lime levelling coat

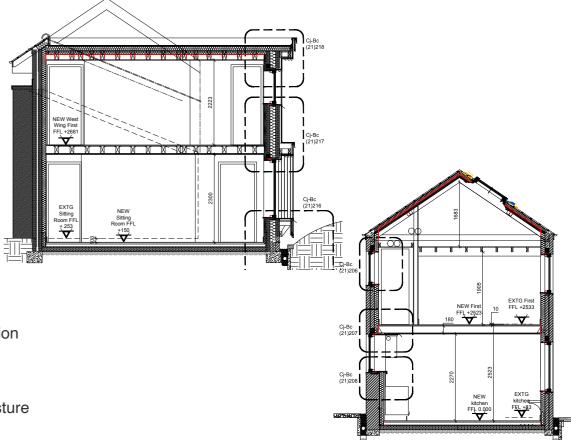
Airtightness primarily achieved through a lime slurry wash.

Internal insulation with Pavadentro

Lime plaster finish and Beeck mineral paint emulsion

External mortar joints ground out and repointed with lime mortar to ensure water vapour permeable construction throughout.


New west wing


Low lambda concrete block and cavity construction with full fill insulation External zinc ventilated rain screen

Internal lime plaster finish and Beeck mineral paint emulsion

Perimeter ground external insulation with Foamit for thermal and moisture control

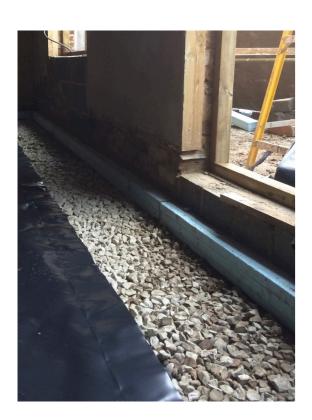
THE BARGE

Floors

Ground and first floors

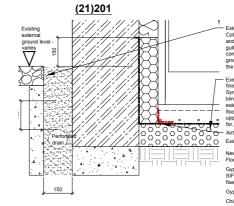
Ground floors

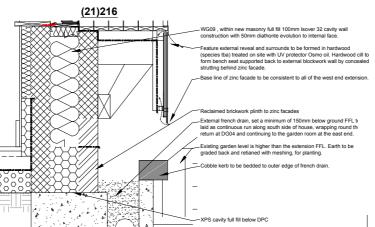
Foamit compacted as thermal hardcore with internal perimeter Styrofoam insulation

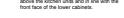

DPM laid over, taped at seams, to receive 100mm poured concrete.

Internal studwork thermally broken from slab with fixing through Compacfoam spacers

Insulation laid over concrete ready to receive underfloor heating and screed


First floors

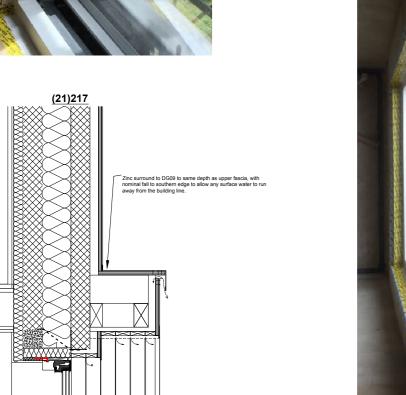

Hung as a raft, thermally broken from the existing solid wall constructions by Compacfoam spacers set through airtight lime slurry with Orcon airtightness sealant

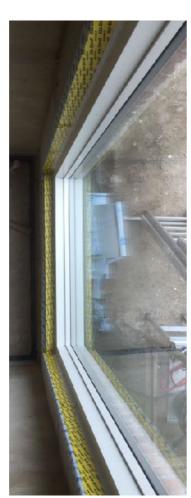


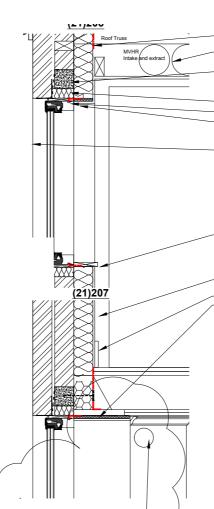
THE BARGE

Windows

Windows and doors


Ideal Combi Futura+


Windows set back 100mm from external facades and fixed with brakcets back to ply reveals. Internal thermal envelope completed with Pavadentro and Spacetherm blanket


Siga airtight tapes close airtight layer to lime slurry. Compriband infill to tolerance gaps on external faces

g values vary according to orientation 0.51 to 0.53 Ug value ranges from 0.52 - 0.57W(m^2K) Class 4 air pemeability

In addition:-

Integrity of wall structure on removal of all existing windows to be considered. Should no suitable lintols be in place: Install concrete 100mm wide litnol to inner wall face and steel anjed with cavity tray to external face. Two seperate lintols to be used to avoid cold bridge.

50mm of Diathonite Evolution to be turned back into reveals.

8mm packer/ tolerance gap to head and sides of windows.

All windows to be fixed back to masonry with stainless steel brackets

as indicated.

All external elevations of original buildings to have mortar joints raked out where failing and any cementificus mortar removed prior to re-pointing with NHL3.5 lime mortar. Lime to fine sand 1.3 measured by volume, mixed with water and once mixed elf this stand for 20mins before use. Raked out joints to be wet down prior to repointing to improve suction of new mortar. Joints to be brushed off when semit dry before end of each day and covered with hessian for a minimum of two days. Any severiy damaged bricks to be replaced in the process.

allow water to tall away trom window tac.

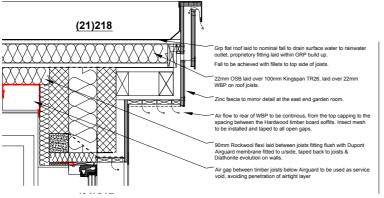
Internal cill boards of varjing depth to have moulded bead edge and lower internal cill boards of varjing depth to have moulded bead edge and lower aprion that on site. Internal window trim in certain rooms subject to on site consideration of proportions and space to window surrounds. This may after the window reveal, head and cill section details, but can be reviewed as the upset to this stage.

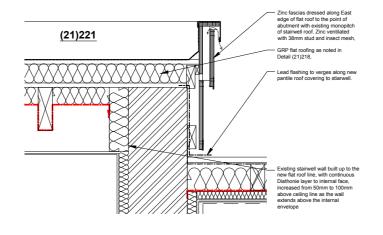
reviewed as the we get to this stage.

New primed skirling boards with moulding to match door architraves and internal window frames and cills. Tba.

Floor construction and fixing of joists all as noted in details (21) 200 & (21) 202.

New Front door DGO1 installed within existing stone opening, with adjustments made to ensure continuation of thermal envelope.





THE BARGE

Roof

Roof construction

Original cottage

Original rafters retained and made true
Warm roof construction created using insulation overlay
Roofing membrane taped at all seams and back to gables and eaves
Additional insulation laid as infill between existing rafters, prior to fitting of internal airtight membrane

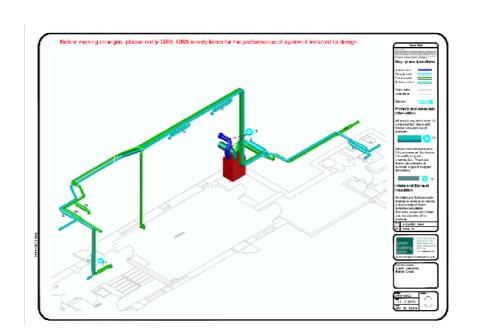
New west wing

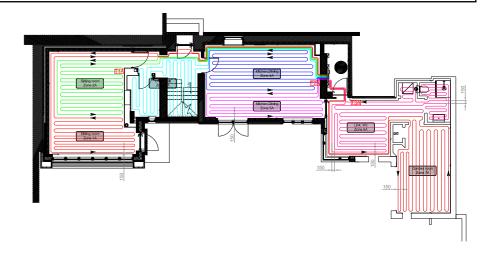
New flat roof formed as a warm roof with GRP top coat to provide surface for south facing PV array

THE BARGE

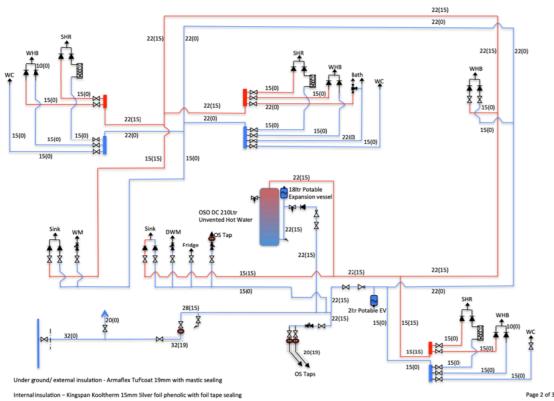
Passivhaus EnerPHit Project Documentation - Services

Services

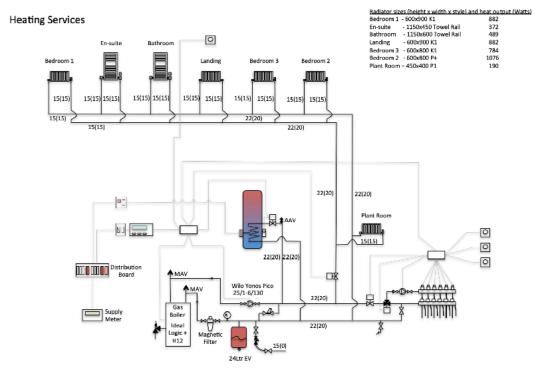

Heating nd DHW


Ground floor under wet system underfloor heating First floor nominal radiator sizes and towel radiators

Oso hot water cylinder All supported by new Ideal gas boiler


MVHR

Paul Novus 300 91.2% hHR,eff 0.24 specific efficiency



Hot and Cold Water Services

Internal insulation – Kingspan Kooltherm 15mm and 20mm Silver foil phenolic with foil tape sealing

THE BARGE

Air tightness & Certification

In accordance with BS EN 13829, ATTMA TSL1 (2016) & TSL4 (2018)

Building Tested:	The Barge
	5 Canal Road, Ripon HG4 1QN
Test Date:	18 th December 2018
Test Engineer:	Paul Jennings, Aldas
Certificate No:	P3731-C01

This is to certify that the above-named dwelling has been tested for air leakage in accordance with the BS EN 13829:2001 methodology and the requirements of ATTMA as specified in TSL1 (2016) & TSL4 (2018). The additional requirements of the Passivhaus Institute when Passivhaus Certification is required were also met. The average Leakage Characteristics of the dwelling were recorded as follows:

also met. The average Leanage onal						
Airflow @ 50 Pa:			123.1 m ³ /hr			
Air Permeability @ 50 Pa:			0.36 m ³ / (hr.m ²)			
Air Change Rate @ 50 Pa:			0.43 AC/hr			
Data consistency, r ² (requirement, r ² > 0.98):			0.995			
Slope, n (requirement, 0.5 < n < 1.0):			0.78			
Intercept, Cenv:			5.85 m ³ / (hr.Pa ⁿ)			
Test Parameters						
Envelope, A _E :			346 m²			
Volume, V:			287.8 m ³			
Env. Calc. prepared by:			Paul Jennings, Aldas & Claire Jamieson,			
			PHI Architecture			
Initial Offset Pressure	-1.40 Pa	Final Offset Pressure:		-0.07 Pa		
Initial Inside Temperature:	13.8°C	Final Inside Temperature:		13.6°C		
Average Outside Temperature:	9.8°C	Barometric Pressure: 102.5				

This certificate should be read in conjunction with the full airtightness test report P3731-02 and associated test method statement.

Signed: ______ Name: Paul Jennings Date Issued: 18th December 2018

Deviations from TSL1 & TSL4 methodology: None

Aldas, 53A Parade, Leamington Spa CV32 4BA

Certificate

Certified retrofit
'EnerPHit Classic'
(Climate zone: Cool-temperate)

Autr ad: by: ergy & hitectural sign Ltd.

Authorise

Institute
Dr. Wolfgang Feist
64283 Darmstadt
Germany

The Barge 5 Canal Road, HG4 1QN Ripon, United Kingdom/ Britain

Client	Claire Jamieson 5 Canal Road HG4 1QN Ripon, United Kingdom/ Britain
Architect	Phi Architecture 5 Canal Road HG4 1QN Ripon, United Kingdom/ Britain
Building Services	NCR Plumbing & Heating 3 The Green HG4 3NJ Galphay, United Kingdom/ Britain
Energy Consultant	Phi Architecture 5 Canal Road HG4 1QN Ripon, United Kingdom/ Britain

Buildings retrofitted to the EnerPHit Standard offer excellent thermal comfort and very good air quality all year round. Due to their high energy efficiency, energy costs as well as greenhouse gas emissions are extremely low.

The design of the above-mentioned building meets the criteria defined by the Passive House Institute for modernization to the 'EnerPHit Classic' standard:

Building quality				This building	This building		Alternative criteria
Heating		Heating demand	[kWh/(m²a)]	28	≤	-	-
Cooling	Frequency of overl	neating (> 25 ℃)	[%]	3	≤	10	
Airtightness	Pressurization test re	esult (n ₅₀)	[1/h]	0.4	≤	1.0	
Non-renewable p	orimary energy (PE)	PE demand	[kWh/(m²a)]	122	≤	0	
Component qual	lity				_		_
Bu	ilding envelope to amb	ient air (U-value)	[W/(m ² K)]	0.13	≤	0.15	
	Building envelope to	ground (U-value)	$[W/(m^2K)]$	0.14	≤	0.25	
Wall with in	terior insulation to amb	ient air (U-value)	[W/(m ² K)]	0.27	≤	0.35	
Windows/E	Exterior doors (Uw,insta	lled)	$[W/(m^2K)]$	0.83	≤	0.86	
	Windows (Uw,insta	lled)	$[W/(m^2K)]$	0.99	≤	1.01	
		Glazing (g- <mark>value)</mark>	[-]	0.52	≥	0.00	
	Glazing/shading	(max. sol <mark>ar load)</mark>	[kWh/(m²a)]		≤	-	
Ve	entilation (effect. heat re	covery efficieny)	[%]	91	≥	75	

The associated certification booklet contains more characteristic values for this building

12001

www.passivehouse.com

18389_MEAD_EP_20190226_KM

THE BARGE

Verification data & additional information

Specific building characteristics with reference to the treated floor area							
	Treated floor area m²	124.8		Criteria	Alternative criteria		Fullfilled?2
Space heating	Heating demand kWh/(m²a)	28	≤	-	-		
	Type to enterglext W/m²	16	≤	-	-		-
Space cooling	Cooling & dehum. demand kWh/(m²a)	-	≤	-	-		
	Cooling load W/m²	-	≤	-	-		-
Frequency of overheating (> 25 °C) %		3	≤	10		•	yes
Frequency excessively high humidity (> 12 g/kg) %		0	≤	20			yes
Airtightness Pressurization test result n ₅₀ 1/h		0.4	≤	1.0			yes
Non-renewable Primary Energy (PE) PE demand kWh/(m²a)		122	s	135.739464			yes
Primary Energy	PER demand kWh/(m²a)	119	≤	-	-		
Renewable (PER)	Generation of renewable energy kWh/(m²a)	28	≥	-	-		-

Additional Information

Special features, factors

Integration of 18th Century cottage solid wall renovation with new build Pigmento green zinc extension within considerable party wall constraints accommodating 8 different external wall types and two different roof types

Water vapour permeable renovation to restore original building fabric

Walled garden with almost entirely south facing aspect enabling excellent solar gains.

4KW array installed on southerly orientation flat roof

Construction costs

Cost per square metre < £2,000 Overall witheld

Energy consumption

Currently monitored by Carlos Jimenenz Bescos, Nottingham University

Phi Architecture Tha Barge 5 Canal Road HG4 1QN