Project Documentation Gebäude-Dokumentation

Abstract | Zusammenfassung

Einfamilien Passivhaus Plus mit integriertem Office

Data of building | Gebäudedaten

Year of construction Baujahr	2019	Space heating	14		
U-value external wall U-Wert Außenwand	0,138	Heizwärmebedarf	kWh/(m²a)		
	W/(m²K)		, (•.)		
U-value basement U-Wert Kellerdecke	0,140	Primary Energy Renewable (PER)	34		
	$W/(m^2K)$	Erneuerbare Primärenergie (PER)	kWh/(m²a)		
U-value roof U-Wert Dach	0,140	Generation of renewable Energy	48		
	$W/(m^2K)$	Erzeugung erneuerb. Energie	kWh/(m²a)		
U-value window U-Wert Fenster	0,8	Non-renewable Primary Energy (PE)	72		
	$W/(m^2K)$	Nicht erneuerbare Primärenergie (PE)	kWh/(m²a)		
Heat recovery Wärmerückgewinnung	93 %	Pressurization test n ₅₀ Drucktest n ₅₀	0,4 h ⁻¹		
Special features Besonderheiten	Sonnenkollektoren für die Warmwasserbereitung				

Brief Description

Passive House Plus Oberon2 Markovo

This Passive house was realized as a model project for the company Oberon Konzeptbau. Because the Passive house standard is still not very well known in Bulgaria, we wanted to create an example for a integrated single-family house and office area, such that we can present the advantages of the standard in a real-life project. The goal was to achieve the Passive house plus level, so that the project can benefit from the national programs for promotion of energy generation by small, private real estate objects.

The size and the architecture of the building was chosen such that an optimal usage for both living and working can be offered. Various cost optimization solutions were implemented to prove that a passive house doesn't necessary need to be very expensive – amongst others, the garage was left outside of the thermal envelope; the south balconies were realized with a free-standing construction in order not to be insulated; sight-concrete was used where possible. The wish for as short ways as possible for all the ventilation tubes was considered from the beginning of the design.

The ground was skew and from hard rock, which led to the design that the different living floors and the office slabs are on different vertical levels. The exterior facades were chosen in a way, that the building has attractive and modern outlook and at the same offers a lot of comfort and light due to the high percentage of glazing.

Kurzbeschreibung

Passivhaus Plus Oberon 2 Markovo

Das Passivhaus wurde als Musterhaus für die Firma Oberon Kozeptbau realisiert. Weil der Passivhaus Standard in Bulgarien noch relativ unbekannt ist, haben wir uns entschieden ein Beispiel für Einfamilienhaus mit integrierter Bürofläche zu errichten, um dort die Vorteile des Standards anhand eines echten Projekts zeigen zu können. Das Ziel war die Anforderungen des Standards Passivhaus Plus zu erreichen, damit das Projekt von der Beförderung in Bulgarien für kleinen, privaten Energieherseller profitieren kann.

Die Abmessungen und die Architektur des Gebäudes wurden so gewählt, dass man eine optimale Nutzung gleichzeitig für Wohnen und Arbeiten anbieten kann. Viele Kostreduzierungsmaßnahmen wurden eingesetzt, um zu zeigen, dass ein Passivhaus nicht unbedignt sehr teuer sein muss – unter anderem ist die Garage außerhalb der beheizten Gebäudehülle, die Südterassen haben eigenständiger Konstruktion und müssen nicht gedämmt werden, Sichtbeton wurde womöglich eingesetzt. Der Wunsch für kurze Leitungen der Ventilation und Heizung wurde bereits in der Innenarchitektur berücksichtigt.

Der Grundstückboden war steil und felsig, was zu unterschiedlichen Ebenen für die Wohnetagen und das Büroteil geführt hat. Die Außenarchitektur wurde so gewählt, dass das Mustergebäude modern und attraktiv wirkt, gleichzeitig durch den hohen Fensteranteil viel Helligkeit und Komfort anbietet und den Passivhausanforderungen entspricht.

Responsible	proj	ject	partic	ipants
Verantwortli	he F	Proje	ektbet	eiligte

Architect Entwurfsverfasser	Dr. Iva Stoyanova
Implementation planning	DrIng. Atanas Stavrev
Ausführungsplanung	http://oberonkbau.com/
Building systems Haustechnik	DiplIng. Ognyan Pekov
Structural engineering	DrIng. Atanas Stavrev
Baustatik	http://oberonkbau.com/
Building physics	DrIng. Atanas Stavrev
Bauphysik	http://oberonkbau.com/
Passive House project planning Passivhaus-Projektierung	Dr. Iva Stoyanova
Construction management	DiplIng. Nikolay Stavrev
Bauleitung	http://oberonkbau.com/

Certifying body Zertifizierungsstelle

Passivhaus Institut Darmstadt www.passiv.de

Certification ID Zertifizierungs ID

24695

Project-ID (https://passivehouse-database.org/#d 5340)

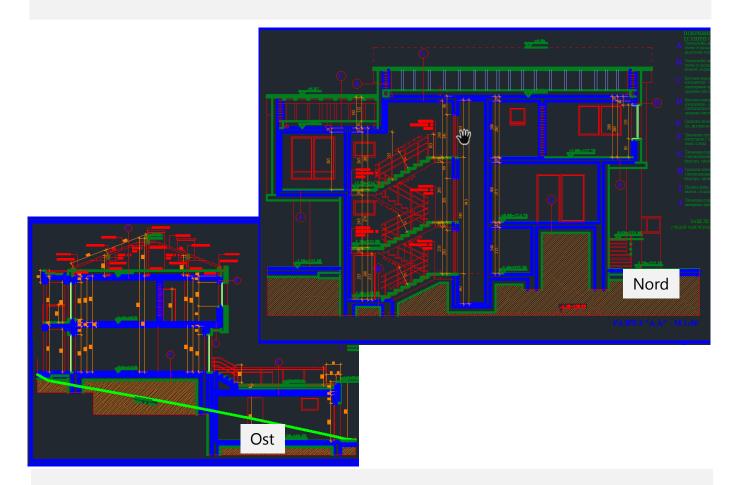
Author of project documentation Verfasser der Gebäude-Dokumentation

Passivhaus Institut Darmstadt www.passiv.de

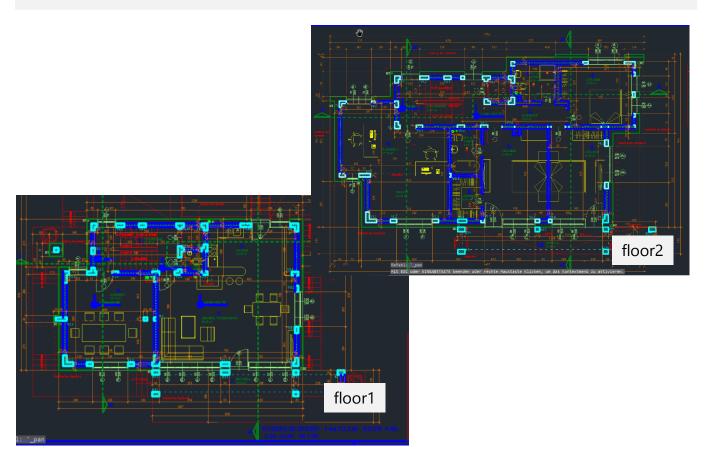
4		
Date Datum		Signature Unterschrift
	18.02.2020	Add your signature Füge deine unterschrift hinzu
		Füge deine

1. Ansichtsfotos

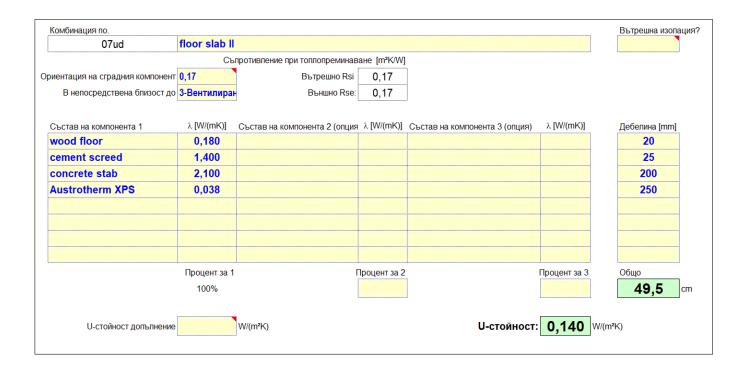


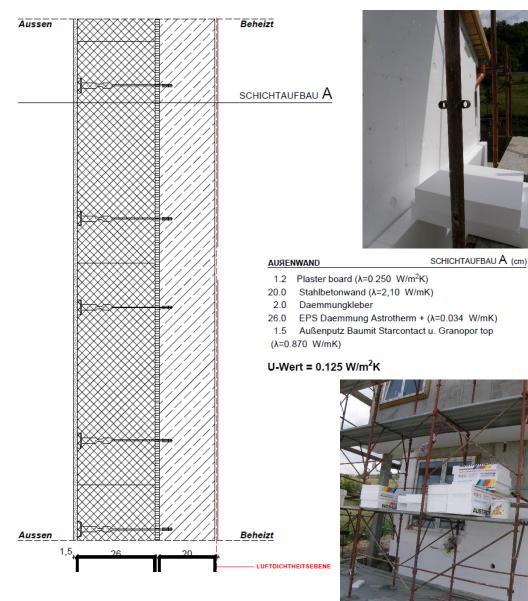


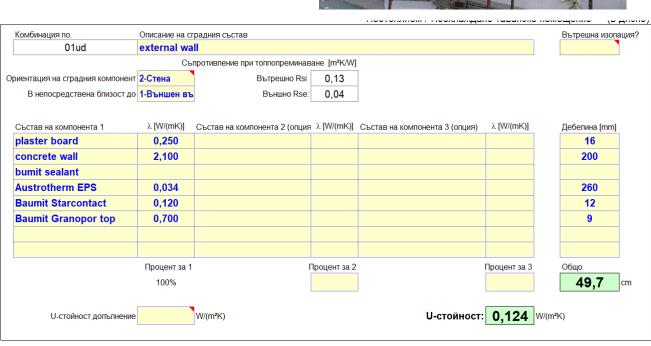
2. Innenfoto exemplarisch

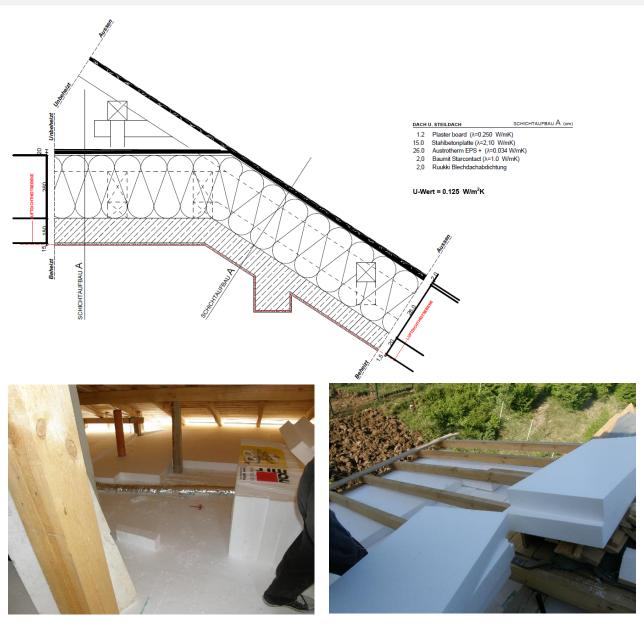


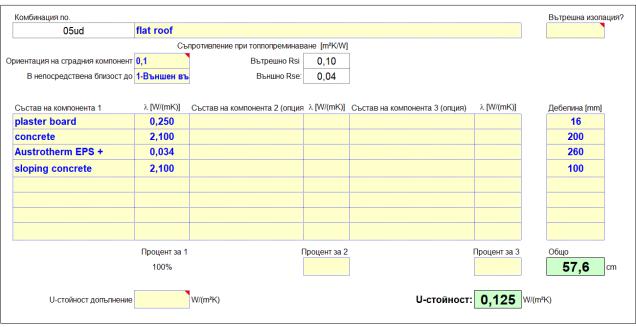
3. Schnittzeichnung


4. Grundrisse

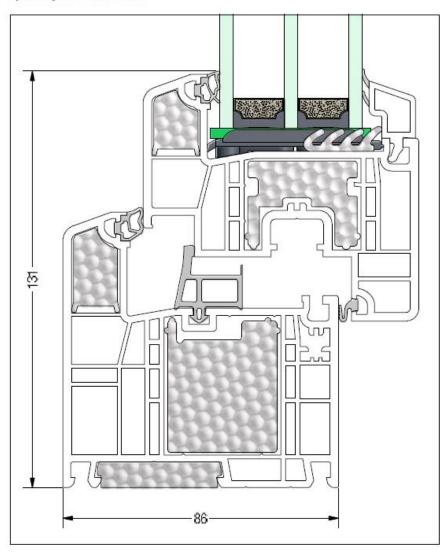

5. Konstruktion der Bodenplatte


Um optimale Wärmedämmung zu gewährleisten, wurde die Bodenplatte von unten gedämmt.


6. Konstruktion der Außenwände



Ausschließlich Beton-Außenwäde mit Wärmedämmung


7. Konstruktion des Daches

8. Fenster und Fenster-Einbau

Systemargumente GENEO® PHZ

Recyclinggerechte Konstruktion

Das sortenreine Trennen und somit eine materialgerechte Wiederverwertung ist problemlos möglich.

Erhöhter Glaseinstand

Durch einen erhöhten Glaseinstand in Verbindung mit einer speziellen Dämmung im Glasfalz wird die Wärmebrücke in diesem Bereich minimiert.

Identische Systemkomponenten

Fs können sämtliche Profile und das Zubehör aus dem System GENEO® sowie die Zusatzprofile der Bautiefe 86 mm verwendet werden.

Fensterrahmen:

 $\begin{array}{l} U_{\gamma} \ [W/(m^2K)] = 0.77 \ / \ 0.78 \ (seitlich \ und \ oben \ / \ unten) \\ \psi_G \ [W/(mK)] = 0.030 \ (seitlich, \ oben \ und \ unten) \\ Breite \ [mm] = 131 \ / \ 161 \ (seitlich \ und \ oben \ / \ unten) \end{array}$

Verglasung:

Results

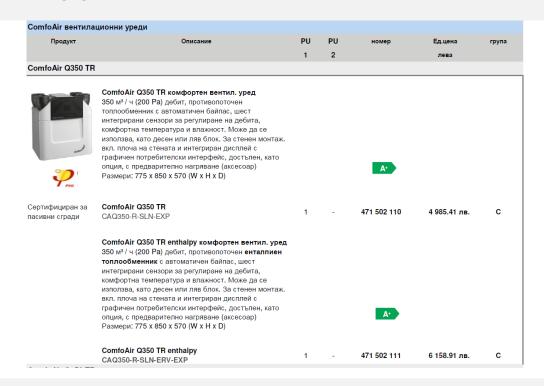
Visible light (EN 410 - 2011)			Solar energy (EN 410 - 2011)		
transmittance [%]	$\tau_{v} =$	70,9	solar factor [%]	g =	52,8
reflectance external [%]	ρ _v =	14,2	shading coefficient [g/0.87]	sc =	0,61
reflectance internal [%]	ρ _v =	14,2	direct transmittance [%]	τ _e =	44,6
general colour rendering index	R _a =	96,9	direct reflectance external [%]	ρ _e =	29,5
			direct reflectance internal [%]	ρ _e =	29,5
Thermal properties (EN 673 - 2	2011)		direct absorption [%]	a =	25,9
U-value [W/(m²K)]	slope α =	90°	UV transmittance [%]	$\tau_{uv} =$	18,3
according to EN:	U _g =	0,6	secondary internal heat transfer factor [%]	$q_i =$	8,1
3 decimal places:	U _g =	0,598	Other data		
			estimated sound reduction index [dB]	$R_w =$	NPD
			(EN 717-1)	C =	NPD
				$C_{tr} =$	NPD

9. Beschreibung der luftdichten Hülle

Air Leakage Test Report

In Compliance with ISO9972:2016 - Europe

Hexagon-NDT Ltd


Markovo, Plovdiv, Bulgaria

Nikolay V. Stavrev

10. Lüftungsgerät

11. Lüftungsplanung Kanalnetz

Certificate

Certified Passive House Plus

Authorised by:

Passive House Institute

Dr. Wolfgang Feist 64283 Darmstadt Germany

PH OBERON 2 Landflaeche Markovo 71 A, 4108 Markovo, Bulgaria

Client	Dipl. Ing. N.Stavrev	
	Landflaeche Markovo 71 A	
	4108 Markovo , Bulgaria	
Architect	Dr Iva Stojanova	
	Hristo Chernopeev 20	
	4002 Plovdiv, Bulgaria	
Building	OBERON KONZEPTBAU	
Services	Landflaeche Markovo 71 A	
	4108 Markovo, Bulgaria	
Energy	OBERON KONZEPTBAU	
Consultant	Landflaeche Markovo 71 A	= 11
-	4108 Markovo, Bulgaria	

Passive House buildings offer excellent thermal comfort and very good air quality all year round. Due to their high energy efficiency, energy costs as well as greenhouse gas emissions are extremely low.

The design of the above-mentioned building meets the criteria defined by the Passive House Institute for the 'Passive House Plus' standard:

Building quality		This building		Criteria	Alternative criteria
Heating					
Heating demar	nd [kWh/(m²a)]	14	S	15	
Heating loa	nd [W/m²]	13	≤		10
Cooling					
Cooling + dehumidification demar	nd [kWh/(m²a)]	11	S	15	15
Cooling los	d [W/m²]	9	5		10
Airtightness					
Pressurization test result (ns	o) [1/h]	0.4	5	0.6	
Renewable primary energy (PER)					
PER-demar	nd [kWh/(m²a)]	34	5	45	34
Generation (reference to ground area	a) [kWh/(m²a)]	48	2	60	46

The associated certification booklet contains coop characteristic values for this building.

Sofia, 17 October 2019

Sofia, 17 October 2019
Certifier: Svetlin Dobrevski, Passive House Bulgaria

www.passivehouse.com

24695_PHB_PH_20191017_SD