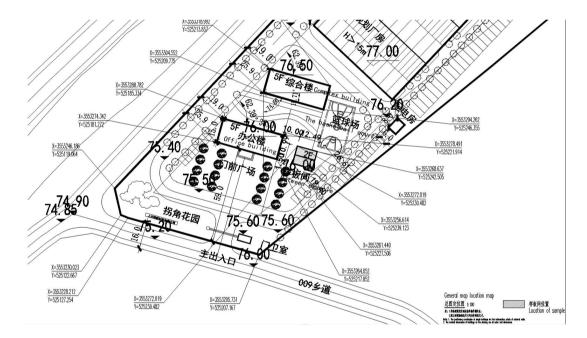
Project Documentation Gebäude-Dokumentation

Abstract | Zusammenfassung

Xinyang Shangtianti New Material (Carbon Neutral) Industrial Park nearly zero energy consumption multi-functional residential model room project

Data of building | Gebäudedaten


Year of construction Baujahr	2021	Space heating	14 kWh/(m²a)			
U-value external wall	0,144	Heizwärmebedarf				
U-Wert Außenwand	W/(m²K)					
U-value basement U-Wert Kellerdecke	0,162	Primary Energy Renewable (PER)	54.98			
	W/(m²K)	Erneuerbare Primärenergie (PER)	kWh/(m²a)			
U-value roof U-Wert Dach	0,121	Generation of renewable Energy	56.15			
	W/(m²K)	Erzeugung erneuerb. Energie	kWh/(m²a)			
U-value window U-Wert Fenster	0,95	Non-renewable Primary Energy (PE)	93.92			
	W/(m²K)	Nicht erneuerbare Primärenergie (PE)	kWh/(m²a)			
Heat recovery Wärmerückgewinnung	78 %	Pressurization test n_{50} Drucktest n_{50}	0,46 h ⁻¹			
Special features Besonderheiten	As the first near-zero energy consumption residential building project in Xinyang area, the near-zero energy consumption multi-functional residential model room project of Xinyang Shangtianti New Material (Carbon Neutral) Industrial Park will help the large-scale landing and promotion of zero-energy, near-zero energy consumption and ultra- low energy consumption residential buildings in the Shangtianti management area.					

Passive House Darmstadt Kranichstein

Xinyang Shangtian ladder new material (carbon neutral) industrial park near-zero energy consumption multi-functional residential model room project is located in Xinyang City, Henan Province, the district of Shangtian ladder management area, for the new residential building. The project is located next to the office building of the park, and only one model room will be used as a test and demonstration of near-zero energy residential buildings.

The project has a construction area of 293.85 m² above ground, a building height of 8.05 m, and a building with 2 floors, and the building functions include living room, dining room, kitchen, bedroom, toilet, storage room, chess and card room, etc., and three-bay room types to meet the needs of self-occupied and homestay.

The project is a residential building, the façade adopts the "new Chinese" design concept, through the external wall and window cover, the outer wall and the line foot of the concave and convex layers, coupled with the double slope roof, so that the architectural shape is subtle and rich.

© Fivewin Architectural Tecnology Groupeneral Layout

Project construction objectives

(1) According to the requirements of the relevant national technical standards for near-zero energy consumption residential buildings, through performance design, on the basis of reasonable control of incremental costs, a comfortable and healthy indoor air environment is realized, while greatly reducing the power consumption of operation.

(2) Create a demonstration project with high standards of science and technology and residential facilities, lead the demonstration of building energy conservation in Xinyang City, and promote the realization of the goal of clean heating demonstration cities in the northern region in hot summer and cold winter.

(3) Through scientific and technological innovation, help Xinyang Shangtianti New Material Technology Co., Ltd. establish a social image of "science and technology, green and humanities" and enhance the influence of enterprises.

Responsible project participants Verantwortliche Projektbeteiligte

,	5
Architect Entwurfsverfasser	Fivewin Architectural Tecnology Group: Yun Qinghua, Yang Cheng
Implementation planning Ausführungsplanung	-
Building systems Haustechnik	Fivewin Architectural Tecnology Group: Ye Xiaobei,Yu Muyang,Liu Yutian
Structural engineering Baustatik	-
Building physics Bauphysik	Fivewin Architectural Tecnology Group: Zhang Jing,Lin Miaomiao,Li Yingying
Passive House project planning Passivhaus-Projektierung	Fivewin Architectural Tecnology Group: Zhang Jing,Lin Miaomiao,Li Yingying
Construction management Bauleitung	-
Certifying body Zertifizierungsstelle	
Passivhaus Institut Darmstadt www.passiv.de	
Certification ID Zertifizierungs ID	
	Project-ID (www.passivehouse-database.org)

NY/1	roject-ID (<u>www.passivehouse-database.org</u>) rojekt-ID (<u>www.passivhausprojekte.de</u>)
------	--

Author of project documentation Verfasser der Gebäude-Dokumentation

Passivhaus Institut Darmstadt www.passiv.de

Date Datum Signature Unterschrift

03.10.2022

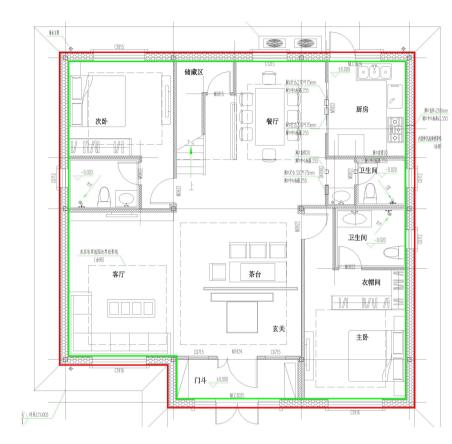
Jing Zhang 34 1

1.1. Exterior Photos

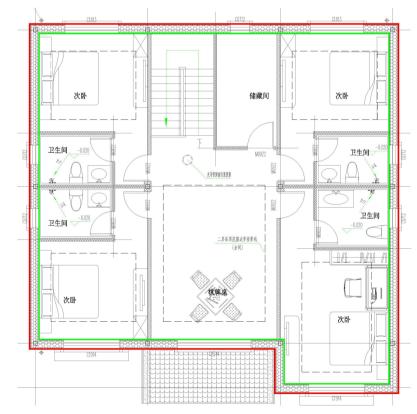
© Fivewin Architectural Tecnology Group

© Fivewin Architectural Tecnology Group

1.2. Typical Interior Photos

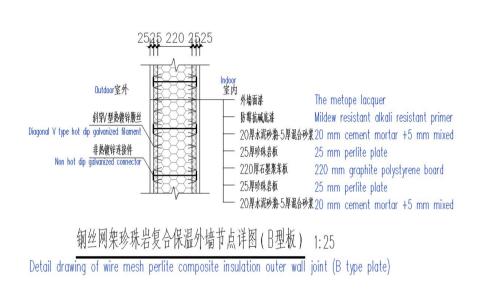


© Fivewin Architectural Tecnology Group

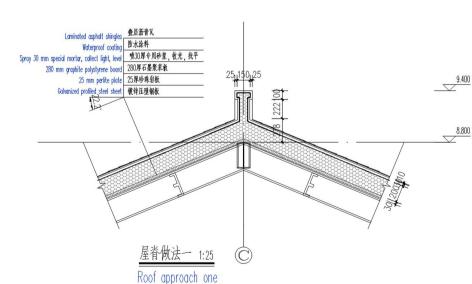


© Fivewin Architectural Tecnology Group

© Fivewin Architectural Tecnology Group


Firsr layer insulation and airtight line

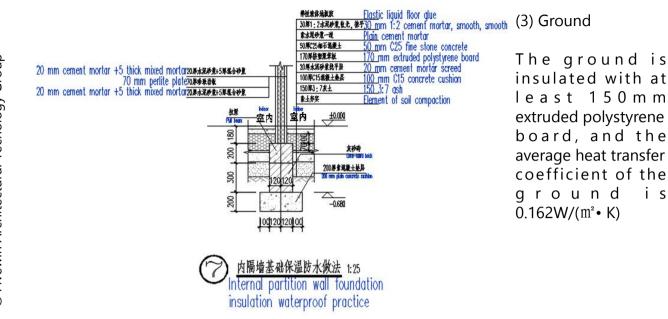
Second layer insulation and airtight line


© Fivewin Architectural Tecnology Group

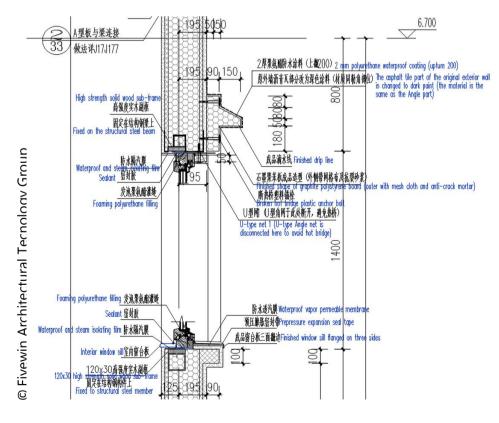
(1) Exterior wall

Schematic Diagram of Exterior Wall Thermal Insulation Structure

The outer wall of the near zero energy consumption multifunction residential model room project in Xinyang New Materials (Carbon Neutralization) Industrial Park is made of 220 thick graphite polystyrene board (steel wire grid perlite composite insulation board), and the average heat transfer coefficient of the outer wall is $0.144 \text{ W}/(\text{m}^2 \cdot \text{K})$


(2) Roofing

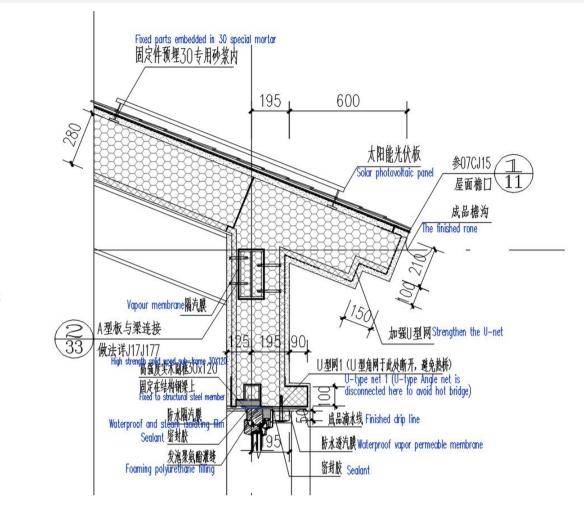
280 thick graphite polystyrene board (steel wire grid perlite composite insulation roof panel) is used for the roof, and the average heat transfer coefficient of the roof is 0.121W/(m² • K).


Schematic Diagram of Roof Insulation Structure

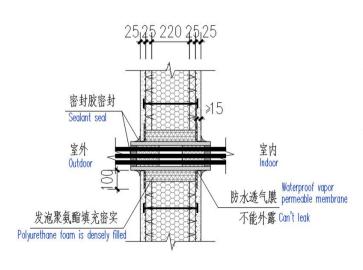
1.3. Building Envelope

© Fivewin Architectural Tecnology Group

Schematic Diagram of Ground Insulation Structure


Schematic Diagram of Outer Window Insulation Structure

(4) External doors and windows


i s

The external doors and windows are constructed with three glasses and two cavities, double Low-e, the hollow layer is filled with inert gas, and the heat transfer coefficient of the window is $1.0W/(m^2 \cdot K)$ (including the installation of thermal bridge), the heat transfer coefficient of the outer door is 1.1 W/(m²·K) (including the installation of thermal bridge), the solar heat gain coefficient (SHGC) is 0.32. The opening part shall be equipped with screen window, and the external window sash must be equipped with anti falling device. The glass gap adopts warm edge spacer strip, and the installation depth of glass in the window frame is 25~30mm.

2.1 Air tightness treatment

Schematic Diagram of Air Tightness Structure of Eaves and External Windows

Schematic Diagram of Air Tightness Structure of Condensate Pipe Passing through Exterior Wal

For the fabricated steel structure system of this project, the sealing and waterproof method is material waterproof, and waterproof vapor barrier membrane and waterproof vapor permeable membrane are used.

The assembly rate of this project reaches 80%, reaching a high assembly rate. Waterproof vapor barrier film and waterproof breathable film are used on the inside and outside of the window, the inside and outside of the joint of perlite composite insulation board and steel structure, the inside and outside of the pipe opening through the wallboard, and the inside and outside of the pipe opening through the roof as important measures and effective ways for waterproof of prefabricated buildings.

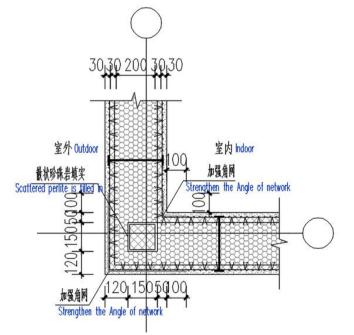
Fivewin Architectural Tecnology Group

0

2.1 Air tightness treatment

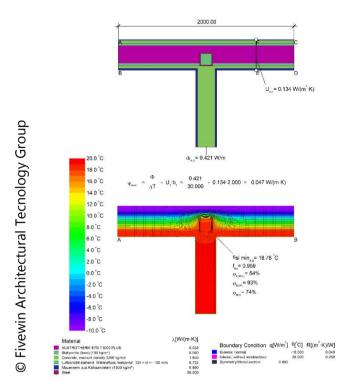
国家时 Assembled construction process of steel structure and exterior wall roof

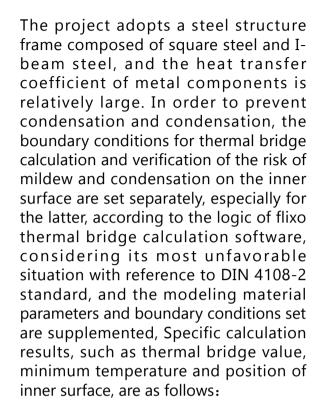
Construction of waterproof membrane and breathable membrane for external windows

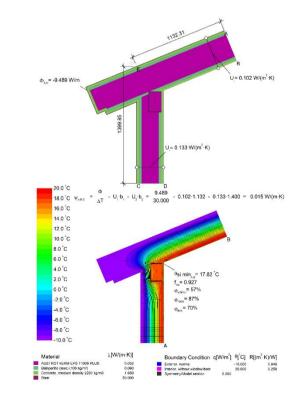

Page | Seite

10

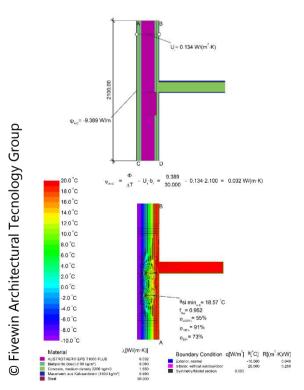
2.2 Design without thermal bridge


Schematic Diagram of Thermal Insulation and Waterproof Nodes of Structural Column Foundation


Schematic Diagram of External Corner Node of External Wall


Thermal bridges have a great impact on building energy consumption. In addition, the appearance of thermal bridges will cause the indoor surface temperature to be too low, which will lead to dew and mildew on the indoor walls and damage the building comfort. The project is located in the north of the hot summer and cold winter climate zone, so it is necessary to consider the design without thermal bridge as much as possible.

2.2 Design without thermal bridge



Calculation of thermal bridge at the junction of external wall and square steel

Calculation of thermal bridge at the joint of eaves and I-beam

Calculation of thermal bridge at the junction of floor slab and I-beam

3 Fresh air conditioning system

First floor fresh air all-in-one machine plan

© Fivewin Architectural Tecnology Group

Fresh air all-in-one machine

Basic scheme: all-in-one fresh air conditioner

The all-in-one environmental control machine for fresh air conditioner integrates the functions of total heat recovery fresh air, refrigeration, heating, dehumidification and purification, and can automatically adjust the opening of fresh air valve, circulating air valve, exhaust valve and the operating frequency of EC blower, EC exhaust fan and compressor according to indoor air parameters (such as temperature, humidity, CO2 concentration, PM2.5 concentration, etc.), so as to achieve a high and comfortable indoor air quality environment

4 Domestic hot water system& Renewable energy utilization

Flat plate solar water collector

© Fivewin Architectural Tecnology Group

Picture of installation of flat panel solar water collector and solar photovoltaic panel

Considering the water consumption and energy conservation and practicality, the solar energy+electric auxiliary hot water system is adopted for domestic hot water.

The flat water collector is adopted, and the water storage tank is placed indoors, which makes the building appearance more neat and beautiful.

According to the data provided in the design specification, the annual radiation in Xinyang area is 4818MJ/m²; The designed PV installed power is 4.5KWp, and the module installation area is about 20 m². Estimated annual power generation is 2825.3 KWh

5 Construction process

Assembled construction process of steel structure and exterior wall roof

Fresh air duct on the first floor

Insulation thickness of exterior wall, roof and ground

Passive H	lous	e Verification				
			Building:	Xinyang Sh	angtianti New Material (Carbon	Neutral) Indus
			Street:	Shangtianti	New Materials (carbon neutral	Industrial Par
			Postcode/City:	464100	Xinyang	
			Province/Country:	Henan	CN-China	
			Building type:	Residential	Building	
			Climate data set:	ud01-CN	0045(a)-Xinyang	
/	1		Climate zone:	4: Warm-ter	nperate Altitude of location:	76 m
	11 1	I II I	Home owner / Client:	Xinyang Sh	angtianti New Material Technol	ogy Co., Ltd.
1 1 4 4 1 1	. 1		Street:	4F, Adminis	trative Service Center Shangti	anti Administra
anterweren and a	1		Postcode/City:	464000	Xinyang	
			Province/Country:	Henan	CN-China	
Architecture:	Fivewin Arc Qinghua,Ya	hitectural Tecnology Group: Yun ng Cheng	Mechanical engineer:	Fivewin Arc Muyang,Liu	chitectural Tecnology Group । । Yutian	'e Xiaobei,Yu
Street:	No. 299 Jinshui Road		Street:	t No. 299 Jinshui Road		
Postcode/City:	450003	Zhengzhou	Postcode/City:	450003 Zhengzhou		
Province/Country:	Henan	CN-China	Province/Country:	Henan	CN-China	
Energy consultancy:	Fivewin Arc Miaomiao,L	hitectural Tecnology Group: Zhang Jing,Lin i Yingying	Certification:	ertification: Passive House Institute		
Street:	No. 299 Jins	shui Road	Street:	Rheinstraße 44/46		
Postcode/City:	450003	Zhengzhou	Postcode/City:	64283 Darmstadt		
Province/Country:	Henan	CN-China	Province/Country:	Hessen	DE-Germany	
Year of construction:	2021	Interi	Interior temperature winter [°C]:		Interior temp. summer [°C]:	25.0
No. of dwelling units:	1	Internal heat gains	Internal heat gains (IHG) heating case [W/m ²]:		IHG cooling case [W/m²]:	2.31
No. of occupants:	3.1	Specific capacity [Wh/K per m ² TFA]:		132	Mechanical cooling:	x

				Alternative		
	Treated floor area m ²	243.0		Criteria	criteria	Fullfilled? ²
Space heating	Heating demand kWh/(m²a)	12.31	≤	15	100	
	Heating load W/m ²	10.33	≤	-	10	yes
Space cooling	Cooling & dehum. demand kWh/(m²a)	19.46	≤	21	21	
	Cooling load W/m ²	10.44	≤	-	10	yes
Frequency of overheating (> 25 °C) %			≤	2		-
Frequency of excessively high humidity (> 12 g/kg) %		0.00	≤	10		yes
Airtightness	Pressurization test result n ₅₀ 1/h	0.46	≤	0.6		yes
Non-renewable Prima	ary Energy (PE) PE demand kWh/(m²a)	93.92	≤	2		-
	PER demand kWh/(m²a)	54.98	≤	60	60	
Primary Energy Renewable (PER)	Generation of renewable energy (in relation to pro- kWh/(m²a) jected building footprint area)	56.15	2	-	100	yes

I confirm that the values given values of the building. The Pl	Passive House Classic?	yes			
Task:	First name:		Surname:		Signature:
2-Certifier	Georgios		Pediotakis		
	Certificate ID	Issued on:	City.		
			Darmstadt, Germany		