Project Documentation – Shotover Passive House

1 Description of project

Single detached dwelling in Shotover country, Queenstown

North Elevation

1.1 Building data

Year of construction	2017	Space Heating	13 kWh/(m²a)
U-value external wall	0.152 W/(m²K)	Primary Energy	37 kWh/(m²a)
		Renewable (PER)	
U-value floor	0.095 W/(m²K)	Generation of	0 kWh/(m²a)
		renewable energy	
U-value roof	0.100 W/(m²K)	Non-renewable	85 kWh/(m²a)
		Primary Energy (PE)	
U-value window/doors	0.97 W/(m²K)	Pressure test n50	0.49 1/h
Heat Recovery	77.7%		

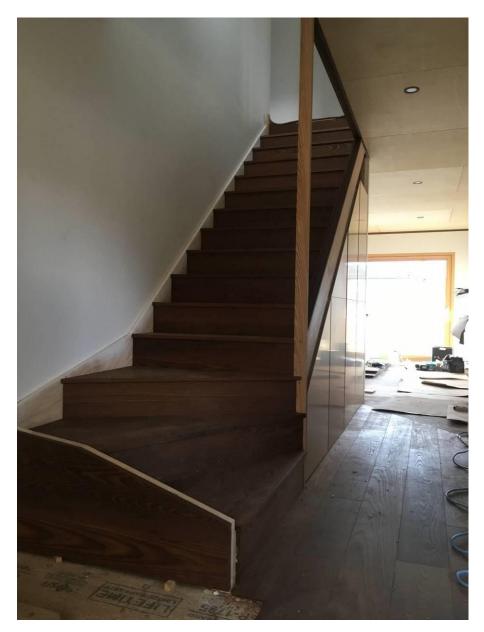
1.2 Brief description of the construction task

The project is a single detached dwelling for a private client. The site is located in a new subdivision in the Wakatipu Basin west of Queenstown. The house itself faces 15 degrees off true north and is 2 storeys with an attached double garage. Immediately to the north of the house is a recreational area.

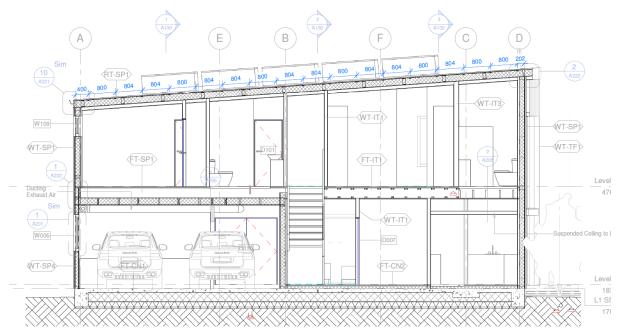
1.3 Responsible project participant

Architecture	Energy Architecture NZ Ltd
Building services	Climate House Ltd
Building physics	Energy Architecture NZ Ltd
Structural engineering Batchelar McDougall Consulting	
Construction management	Climate House Ltd
Certifying body	Sustainable Engineering Ltd
Certification ID	ID: 5573
Author of project documentation	Energy Architecture NZ Ltd

2 Photographs


East Elevation

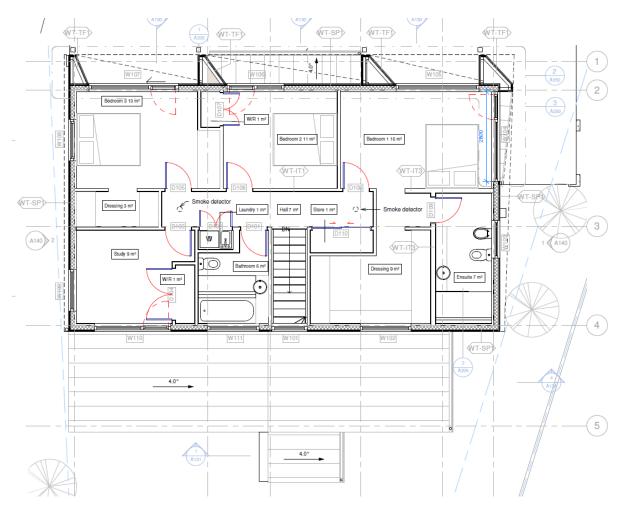
West Elevation



South Elevation (Just prior to completion)

Entrance (Just prior to completion)

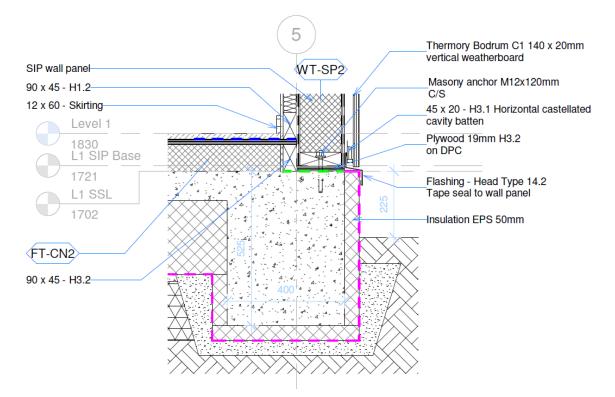
3 Sectional drawing with description


Typical Section

The thermal envelope is fairly simple, the main challenge been the inclusion of a double garage within the dwelling (but outside the thermal envelope). The main roof sits over the whole of the first floor. A smaller, lower roof covers some of the garage, entrance and snug.

Ground floor plan

The ground floor plan contains the living spaces, kitchen, an office, WC and the garage (outside the thermal envelope). The location of the garage presented some challenges in terms the surface area and of detailing. The MVHR is located in the garage. The north elevation has some non-structural elements to provide shading

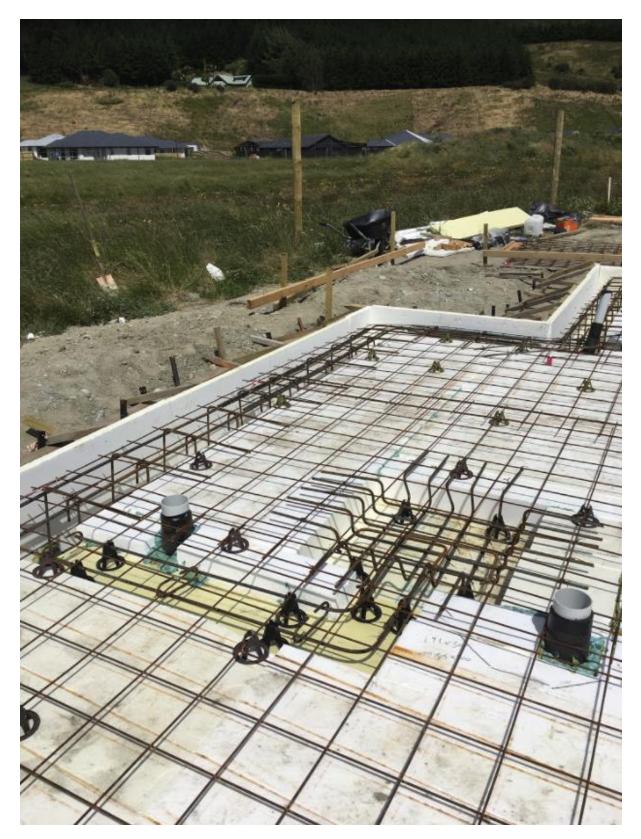


First floor plan

The First floor contains, bedrooms, bathrooms and a second study. The north elevation has some non-structural elements to provide shading

5 Construction details of the envelope

5.1 Description of the construction of the floor slab

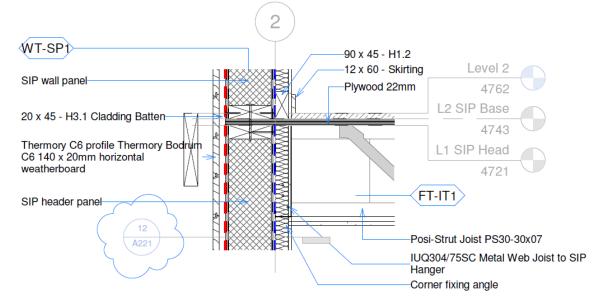


Typical Foundation Edge

The floor is a 100mm concrete slab with 90mm PUR insulation overlay and 250mm EPS under the slab.

U-value 0.095 W/(m²K)

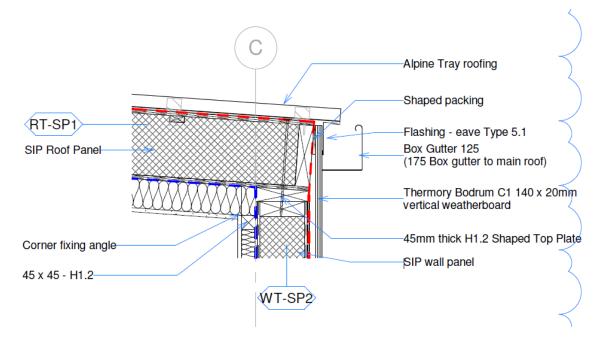
The overlay PUR insulation helps to minimize thermal bridging as the SIP panel cannot overhang the edge of the slab for perimeter insulation continuity.



Under slab and perimeter insulation, prior to concrete pouring.

Edge of overlay insulation build up visible prior to installation of doors

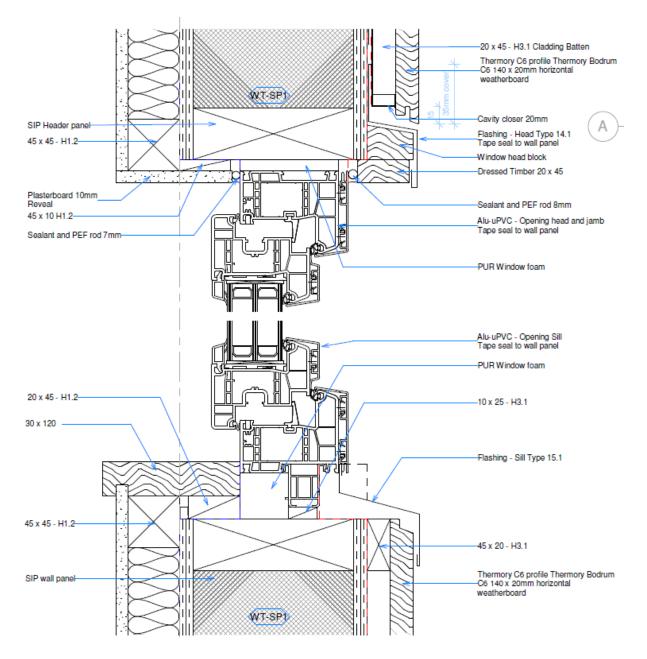
5.2 Description of the construction of the exterior walls


Typical mid-floor detail

External walls were constructed with 165mm PUR core SIP panels, with 45mm battens/insulation and plasterboard to the interior and 20mm cladding battens and timber weatherboards to the exterior. U-value 0.152 W/(m^2K)

Ground floor SIP panels in place

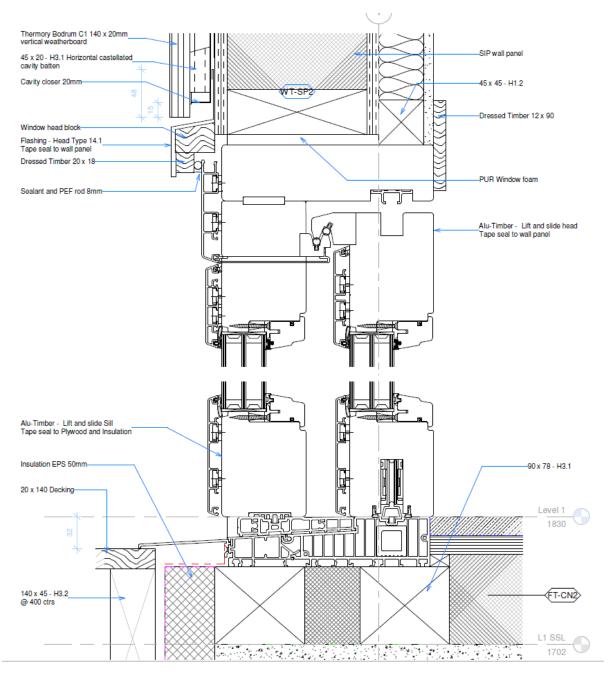
5.3 Description of the construction of the roof


Typical eave detail.

Roofs were constructed with 215mm PUR core SIP panels, with 90mm battens/insulation and plasterboard to the interior and tray roofing to the exterior. U-value 0.100 W/(m^{2} K)

Roof panel installation

5.4 Description of the window sections including installation drawing


Typical window head and sill detail

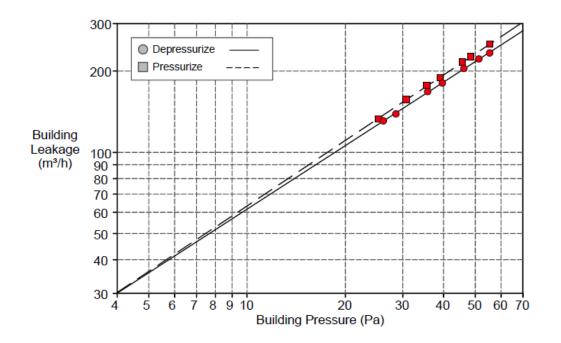
Windows are aluminium clad uPVC frame with triple low-e glazing. Uf 0.79 W/(m^2 K). kneer-suedfenster KF 714 S WD-P Thermal protection glass 4:/18/4/18/:4 Ug 0,5/ g 0.53

Installed window, prior to installation of internal insulation and linings. OSB airtightness layer.

5.5 Description of the sliding door sections including installation drawing

Typical sliding door head and sill detail

Sliding doors are aluminium clad timber frame with triple low-e glazing. Uf 1.1 W/(m²K). kneer-suedfenster Alu-wood lift and slide door 115 Thermal protection glass 6ESG:/16/6/14/:6ESG Ug 0,6/ g 0.53



Installed sliding door

6 Description of the airtight envelope

Interior OSB layer of SIP panels forms the airtightness layer for the roof and walls (photo previous). The plywood overlay form the airtightness layer to the floor. All joints were tape sealed. Pressure test n50 result was 0.49 1/h

Depressurization	Pressurization	Average
217 (+/-0.6%) 0.47 1.21	232 (+/-0.5%) 0.50 1.30	224 0.49 1.26
	70.7 / / 0.0 //	
68.8 (+/- 3.4 %)	70.7 (+/- 2.8 %)	69.7
32.4 (+/- 5.5 %)	32.6 (+/- 4.5 %)	32.5
10.1 (+/- 8.7 %)	9.9 (+/- 7.1 %)	
10.2 (+/- 8.7 %)	9.9 (+/- 7.1 %)	
0.782 (+/- 0.023)	· · · · · · · · · · · · · · · · · · ·	
0.99967	0.99980	
A		
	217 (+/- 0.6 %) 0.47 1.21 68.8 (+/- 3.4 %) 32.4 (+/- 5.5 %) 10.1 (+/- 8.7 %) 10.2 (+/- 8.7 %) 0.782 (+/- 0.023) 0.99967 EN 13829 Depressurization and Pr A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Final pressure test results

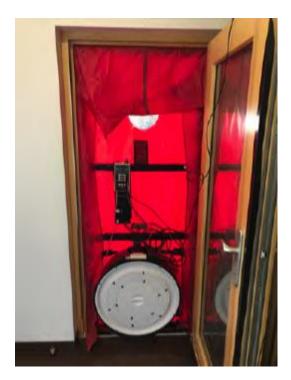
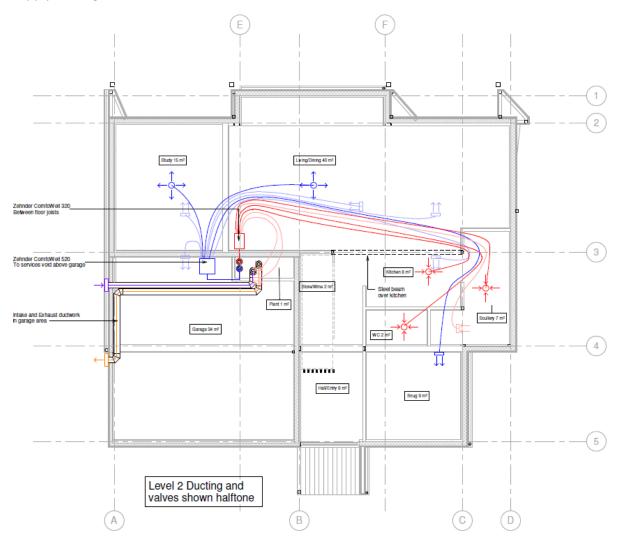
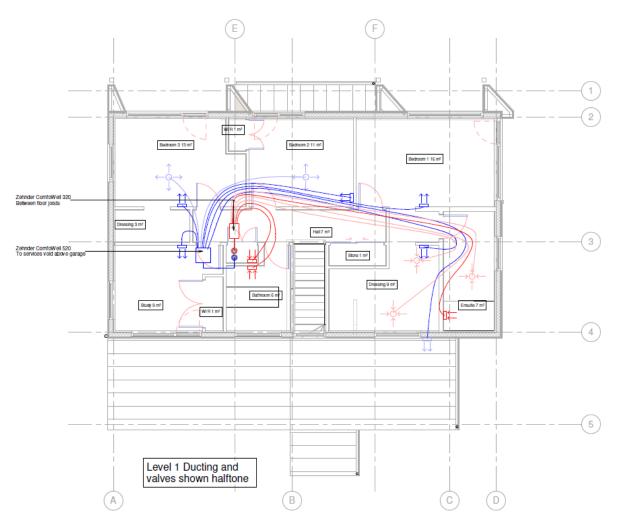



Photo of blower door test in progress


7 Description of the planning of the ventilation ductwork

7.1.1 Ventilation layout

Most services (including MVHR ductwork) were installed to the intermediate floor, which was formed using open web timber trusses. The Compact unit was located in the garage. Ceiling valves were used to introduced and extract air from ground floor roofs. Wall mounted valves (low level for supply and high level for extract) were used for first floor rooms

1. Ground floor ventilation layout

2. First floor ventilation layout

7.1.2 Description of the planning for the central unit

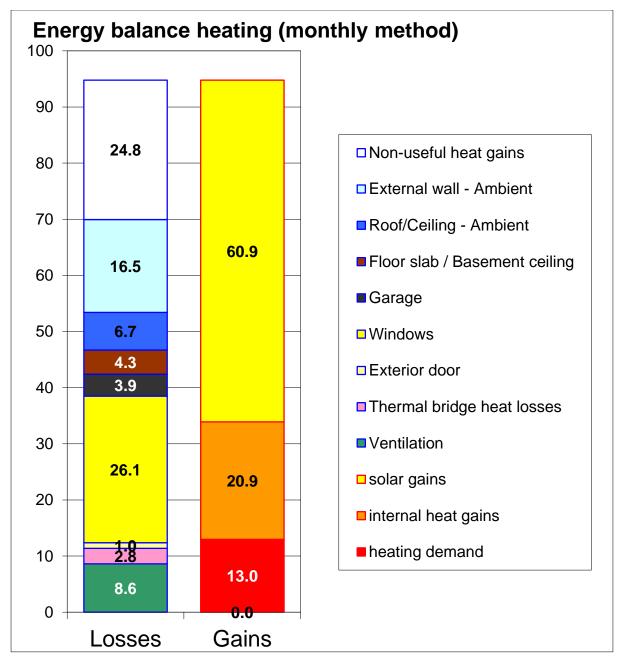
ventilation system make	Nilan Compact P
effective heat recovery efficiency	77.7%
electrical efficiency	0.4 Wh/m³)

3. Nilan compact P in garage

4. Supply air manifold between joist in intermediate floor.

8 Description of the heat supply system

Nilan Compact P compact unit in garage. Supply air heating and domestic hot water.


Refer image 20.

9 PHPP results

Passive	Hous	e Ver	ification	Î.					
	Photo or Drav	ving			Building:				
					Street:	10			
					Postcode/City:	9304	Queenstown		
					Province/Country:	Otago	NZ-New Zealand		
					Building type:	Detached	residential		
					Climate data set:	t: NZ0006b-Queenstown			
					Climate zone:	4: Warm-t	emperate Altitude of location:	333 m	
					Home owner / Client:	1	ากกร้างการการการการการการการการการการการการการก		
					Street:				
					Postcode/City:				
					Province/Country:				
Architecture:	Energy Architecture NZ Ltd				Mechanical system:	Climate H	ouse Ltd		
Street:	1/202 Oriental Parade				Street:	98 Jacks Point Rise			
Postcode/City:	6011 Wellington				Postcode/City:	9371 Queenstown			
Province/Country:	Wellington	ngton NZ-New Zealand			Province/Country:	Otago NZ-New Zealand			
Energy consultancy:	Energy Architecture NZ Ltd				Certification:	Sustainable Engineering Ltd			
Street:	1/202 Oriental Parade				Street:	76 Virginia Rd			
Postcode/City:	6011	Wellingto	n		Postcode/City:	4500	Whanganui		
Province/Country:	Wellington	-	NZ-New Zealand				NZ-New Zealand		
Year of construction:	2016			Interior temperature winter [°C]:		20.0	Interior temp. summer [°C]:	25.0	
No. of dwelling units:	1		Internal h	Internal heat gains (IHG) heating case [W/m ²]:			IHG cooling case [W/m²]:	2.4	
No. of occupants:	3.0			Specific capa	acity [Wh/K per m ² TFA]:	60	Mechanical cooling:		

	-		2	174.6			Alternative		
Treated floor area		m			Criteria	criteria		Fullfilled?	
Space heating Heating deman		Heating demand	kWh/(m²a)	12.99	≤	15	-		yes
		Heating load	W/m²	11.07	≤	-	10		yes
Space cooling Cooling &		dehum. demand	kWh/(m²a)	-	≤	-	-		
		Cooling load	W/m²	-	≤	-	-		-
Frequency of overheating (> 25 °C) %		%	6	≤	10			yes	
Frequency excessively high humidity (> 12 g/kg)		%	0	≤	20			yes	
Airtightness	Pressurization test result n ₅₀		1/h	0.6	≤	0.6			yes
Non-renewable Primary Energy (PE) PE demand		kWh/(m²a)	85	<	120			yes	
Primary Energy		PER demand	kWh/(m²a)	37	≤	-	-		
Renewable (PER)	Generat	Generation of renewable energy			≥	-	-		-
							² Empty field: Data missing; '-': No rec		
l confirm that the value characteristic values o						n the	Passive Ho	use Classic?	yes
Task			First name:			Surname:			Signati
1-Designer		Guy			Shaw			(usflex	
				Issued on:		City:		. UUNDAN	V

5. PHPP verification sheet

^{6.} PHPP Heating Tab

The majority of the heat gain was from solar gain. Careful modelling of the overheating risk was undertaken, including best case & worse case scenarios. Additional shading during the construction phase and further recommendations have been made to control solar gain in summer months.