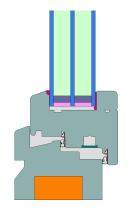
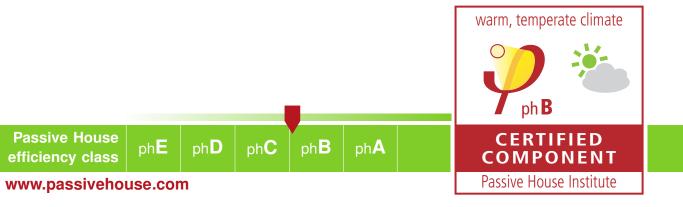
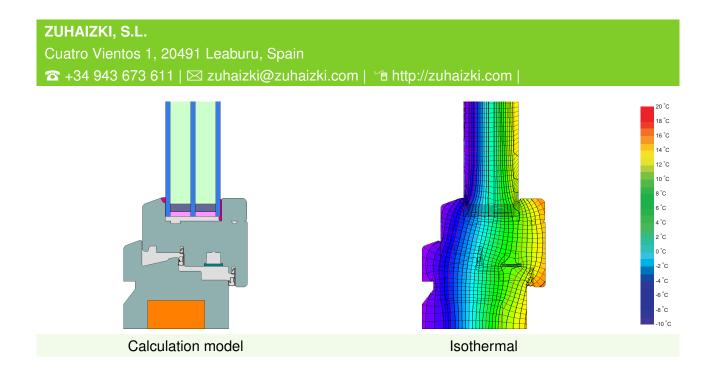

CERTIFICATE

Certified Passive House Component Component-ID 1752wi04 valid until 31st December 2025 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany




Category:	Window Frame
Manufacturer:	ZUHAIZKI, S.L.,
	Leaburu,
	Spain
Product name:	ZUHAIZKI 92 PASSIVHAUS


This certificate was awarded based on the following criteria for the warm, temperate climate zone

Comfort	<i>U_W</i> = 1.00	\leq	1.00 W/(m ² K)
	$U_{W,\text{installed}}$	\leq	1.05 W/(m ² K)
	with U_g	=	0.90 W/(m ² K)

Hygiene $f_{Rsi=0.25}$ \geq 0.65

Description

Timber frame (Spruce/fir 0.11 W/(mK)), main frame partially insulated (0.040 W/(mK)). Pane thickness: 48 mm (4/18/4/18/4), rebate depth: 15 mm. Spacer: TGI-Spacer M.

Explanation

The window U-values were calculated for the test window size of 1.23 m \times 1.48 m with U_g = 0.90 W/(m² K). If a higher quality glazing is used, the window U-values will improve as follows:

Glazing	$U_g =$	0.90	0.70	0.68	0.64	W/(m ² K)
		\downarrow	\downarrow	\downarrow	\downarrow	
Window	$U_W =$	1.00	0.86	0.84	0.82	W/(m ² K)

Transparent building components are classified into efficiency classes depending on the heat losses through the opaque part. The frame U-Values, frame widths, thermal bridges at the glazing edge, and the glazing edge lengths are included in these heat losses. A more detailed report of the calculations performed in the context of certification is available from the manufacturer.

The Passive House Institute has defined international component criteria for seven climate zones. In principle, components which have been certified for climate zones with higher requirements may also be used in climates with less stringent requirements. In a particular climate zone it may make sense to use a component of a higher thermal quality which has been certified for a climate zone with more stringent requirements.

Further information relating to certification can be found on www.passivehouse.com and passipedia.org.

Validated installations

Lightweight tim	nber (operable)		sulation and finishing (EIFS) (operable)	Cavity	wall (operable)
$U_{\text{Wall}} = 0.2$	4 W/(m ² K)	U _{Wall} :	= 0.23 W/(m ² K)	$U_{Wall} =$	$0.22 W/(m^2 K)$
				ر به	Hind and the set of th
$\Psi_{install}$	W/(m K)	$\Psi_{install}$	W/(m K)	$\Psi_{install}$	W/(m K)
Тор	0.008	Тор	-0.002	Тор	0.002
Side	0.008	Side	-0.002	Side	0.002
Bottom	0.027	Bottom	0.014	Bottom	0.015
$U_{W,\text{installed}} = 1$.03 W/(m ² K)	$U_{W,\text{installe}}$	$_{ed} = 1.00 W/(m^2 K)$	U _{W,installec}	_I = 1.01 W/(m ² K)

Frame values	S		Frame width <i>b</i> f mm	<i>U</i> -value frame <i>U</i> f W/(m ² K)	$arPsi$ -glazing edge $arPsi_g$ W/(m K)	Temp. Factor f _{Rsi=0.25} [-]
Flying Mul- lion	(FM1)	1	130	1.04	0.034	0.67
Bottom	(OB1)	4	115	0.93	0.034	0.68
Тор	(OH1)	F	115	0.94	0.034	0.68
Lateral	(OJ1)	<u>11</u>	115	0.94	0.034	0.68
Spacer: Technoform-Spacer SP12, SP13, SP14 Secondary seal: Polysulfide						

www.passivehouse.com