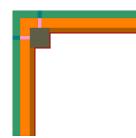
CERTIFICATE

Certified Passive House Component

Component-ID 2285cs04 valid until 31st December 2025

Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany



Category: Construction system

Manufacturer: Hispalyt,

Madrid, Spain

Product name: Structura

Hygiene criterion

The mininum temperature factor of the interior surfaces is

Comfort criterion

The U-value of the installed windows is

$f_{Rsi=0.25 \, \text{m}^2 \, \text{K/W}} \ge 0.65$

$$U_{wi} \le 1.05 \, \text{W/(m}^2 \, \text{K)}$$

Efficiency criteria

Heat transfer coefficient of building envelope:

Temperature factor of opaque junctions:

Thermal bridge-free design for key connection details:

An airtightness concept for all components and connection details was provided.

It was confirmed that the structure will dry out within 12 months and there is no risk of moisture-related damage.

$$U*f_{PHI} \leq 0.25 \, \mathrm{W/(m^2 \, K)}$$
 $f_{Rsi=0.25 \, \mathrm{m^2 \, K/W}} \geq 0.82$ $\Psi \leq 0.01 \, \mathrm{W/(m \, K)}$

Hispalyt

C/ Orense 10, 28020 Madrid, Spain

Opaque building envelope

Structura is a cavity wall system with an interior brick layer consisting of 7 cm Hispalyt double hol-low bricks (930 kg/m³; partition 60 mm <E <90 mm), an insulation layer of 15 cm with mineral wool insulation (0.040 W/(mK)) and an exterior brick layer consisting of Hispalyt 1/2 foot perforated bricks (1020 kg/m³). In the U-value of the wall steel mesh in the exterior brick layer was considered. For the thermal bridges wall connecting anchors in the connection points are taken into account. The interior wall corner connection does not pass efficiency criteria due to the geometric effect. The connections of interior walls to the exterior wall as well as the ceiling integration into the exterior wall also do not pass efficiency criteria. As the main insulation layer is continuous around the details and interior surface temperatures are high enough this is acceptable. With this the Passive House Standard can still plausibly be achieved.

Windows

For the purposes of certification a generic triple-glazed passive house window (Uw = 1.0 W/(m²K) with Ug = 0.90 W/(m²K), featuring phA thermal values for the spacer and a polysulfide secondary seal was used. The overall U-value of the installed window of standard size (1.23 m wide by 1.48 m tall) should be no more than 0,05 W/(m²K) greater than the Uw to ensure occupant comfort - this criteria is met in this instance. The calculations undertaken demonstrate that the window installation locations are suited to the warm-temperate climate zone, with no risk of surface condensation or subsequent mold growth. Mounting of the windows are ensured through the use of a timber support frame around the window. Windows are then screwed into this support frame.

Airtightness concept

Airtightness is ensured by the interior plaster layer. Connections to interior ceilings, windows, roof and floor slab are to be sealed with airtight tape.

Summary of values

Opaque asse	emblies	U-value W/(m² K)	Thickness mm
exterior wall	(EW1)	0.23	350
flat roof	(FR1)	0.25	465
floor slab	(FS1)	0.24	525
pitched roof	(RO1)	0.23	485

Frame Cuts with "dummy wood window warm-temperate" from "dummy window manufacturer" (0004)						
Frame value	es		Frame width <i>b_f</i> mm	<i>U</i> -value frame <i>U_f</i> W/(m ² K)	Ψ -glazing edge Ψ_g W/(m K)	Temp. Factor $f_{Rsi=0.25}$ [-]
Bottom	(OB1)	4	125	0.92	0.038	0.70
Тор	(OH1)	F	125	0.92	0.038	0.70
Lateral	(OJ1)	1	125	0.92	0.038	0.70
Threshold	(OT1)	1	125	0.92	0.038	0.70
Spacer: PHI phB-Spacer Secondary seal: Polysulfide						

Junctions		U1 U2 U3 W/(m² K)	Ψ -value Ψ W/(m K)	Temp. factor $f_{Rsi=0.25}$ [-]
Ceiling integration into exterior wall (EW1_EW1_CE_1)	ŀ	0.23 0.23	0.015	0.944
Exterior corner exterior wall (EW1_EW1_ec_1)	Γ	0.23 0.23	-0.084	0.903
Interior corner exterior wall (EW1_EW1_ic_1)	4	0.23 0.23	0.087	0.936
Internal wall integration into exterior wall (EW1_EW1_IW_1)	_	0.23 0.23	0.021	0.936
Roof parapet flat roof (EW1_FR1_rp_1)	-	0.23 0.25	-0.081	0.892
Window bottom operable window in exterior wall (EW1_OB1_1)		0.23 0.92	0.022	0.798
Window head operable window in exterior wall (EW1_OH1_1)		0.23 0.92	0.009	0.800
Window jamb operable window in exterior wall (EW1_OJ1_1)	5-	0.23 0.92	0.009	0.800
Roof eave pitched roof (EW1_RO1_ea_1)		0.23 0.23	-0.038	0.903
Roof verge pitched roof (EW1_RO1_ve_1)	Г	0.23 0.23	-0.058	0.886
Threshold to floor slab (FS1_EW1_OT1_1)		0.24 0.23 0.92	0.003	0.770
Exterior wall plinth on floor slab (FS1_EW1_1)	Ŀ	0.24 0.23	-0.089	0.868

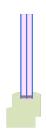
Opaque Assemblies

flat roof	Material	Lambda W/(mK)	Thickness (mm)
flat roof (FR1)	Insulation 040	0.040	150
	concrete (1 % steel)	2.300	300
	gypsum plaster (interior plaster)	0.570	15
		Total thickness: 465	5 mm
		Rsi: 0.10 m ² K/W	
		Rse: 0.04 m ² K/W	
		U-value: 0.25 W/(m	² K)
	_		·

floor alab	Material	Lambda W/(mK)	Thickness (mm)	
floor slab (FS1)	artificial stone	1.300	25	
	cement screet	1.400	50	
	XPS 040	0.040	150	
	concrete (1 % steel)	2.300	300	
		Total thickness: 525	Total thickness: 525 mm	
		Rsi: 0.17 m ² K/W	Rsi: 0.17 m ² K/W	
		Rse: - m ² K/W		
		U-value: 0.24 W/(m²	² K)	
	•			

	pitched roof (RO1)	Material	Lambda W/(mK)	Thickness (mm)
		softwood, OSB - perpendicular to grain direction	0.130	20
		Insulation 040	0.040	150
		concrete (1 % steel)	2.300	300
		gypsum plaster (interior plaster)	0.570	15
			Total thickness: 485 m	ım
			Rsi: 0.10 m ² K/W	
			Rse: 0.10 m ² K/W	
			U-value: 0.23 W/(m ² K	()
			·	<u></u>

Frame Cuts with "dummy wood window warm-temperate" from "dummy window manufacturer (0004)

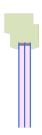

Bottom

 $b_f = 125 \, \text{mm}$

 $U_f = 0.92 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.038 \, \text{W/(m K)}$

 $f_{Rsi}=0.70$

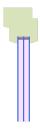

Top

 $b_f = 125 \, \text{mm}$

 $U_f = 0.92 \, \text{W/(m}^2 \, \text{K)}$

 Ψ_g = 0.038 W/(m K)

 $f_{Rsi}=0.70$

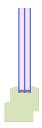

Lateral

 $b_f = 125 \, \text{mm}$

 $U_f = 0.92 \, \text{W/(m}^2 \, \text{K)}$

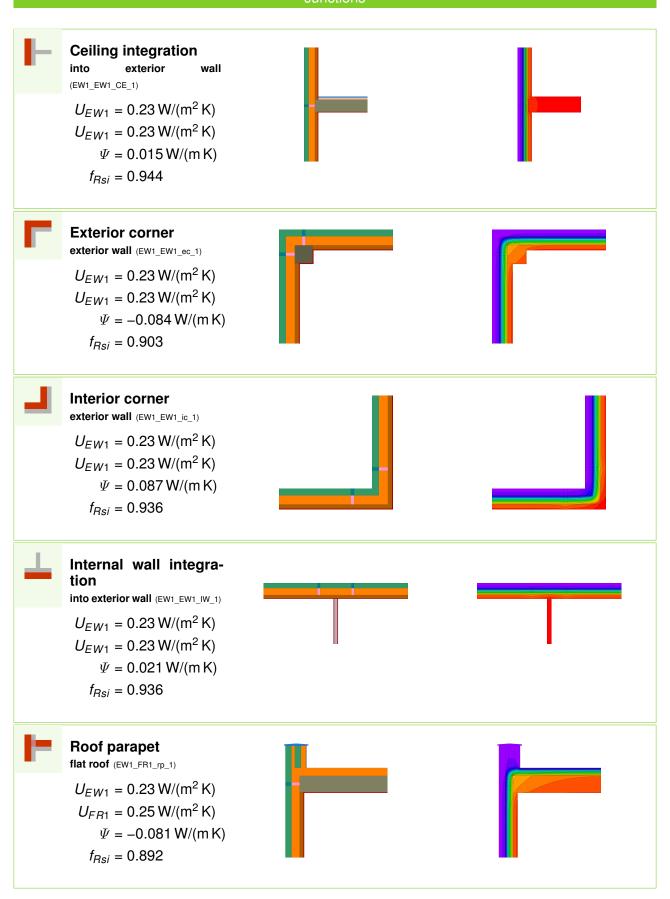
 $\Psi_g = 0.038 \, \text{W/(m K)}$

 $f_{Rsi}=0.70$


Threshold

 $b_f = 125 \, \text{mm}$

 $U_f = 0.92 \, \text{W/(m}^2 \, \text{K)}$


 $\Psi_q = 0.038 \, \text{W/(m K)}$

 $f_{Rsi} = 0.70$

Junctions

Window bottom

operable window in exterior wall (EW1_OB1_1)

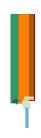
$$U_{EW1} = 0.23 \, \text{W/(m}^2 \, \text{K)}$$

$$U_{OB1} = 0.92 \, \text{W/(m}^2 \, \text{K)}$$

$$\Psi = 0.022 \, \text{W/(m K)}$$

$$f_{Rsi}=0.798$$

Window head


operable window in exterior wall (EW1_OH1_1)

$$U_{EW1} = 0.23 \, \text{W/(m}^2 \, \text{K)}$$

$$U_{OH1} = 0.92 \, \text{W/(m}^2 \, \text{K)}$$

$$\Psi = 0.009 \, \text{W/(m K)}$$

$$f_{Rsi}=0.800$$

Window jamb

operable window in exterior wall (EW1_OJ1_1)

$$U_{EW1} = 0.23 \, \text{W/(m}^2 \, \text{K)}$$

$$U_{OJ1} = 0.92 \, \text{W/(m}^2 \, \text{K)}$$

$$\Psi = 0.009 \, \text{W/(m K)}$$

$$f_{Rsi}=0.800$$

Roof eave

pitched roof (EW1_RO1_ea_1)

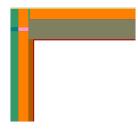
$$U_{EW1} = 0.23 \, \text{W/(m}^2 \, \text{K)}$$

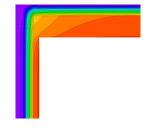
$$U_{RO1} = 0.23 \, \text{W/(m}^2 \, \text{K)}$$

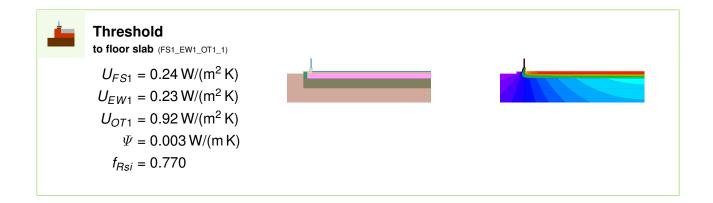
$$\Psi = -0.038 \, \text{W/(m K)}$$

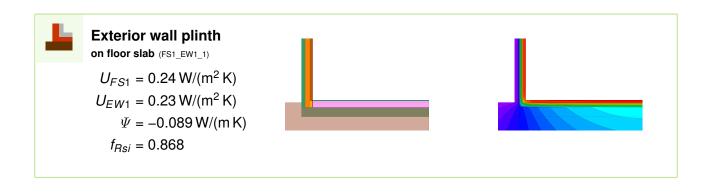
$$f_{Rsi}=0.903$$

Roof verge


pitched roof (EW1_RO1_ve_1)


$$U_{EW1} = 0.23 \, \text{W/(m}^2 \, \text{K)}$$


$$U_{RO1} = 0.23 \, \text{W/(m}^2 \, \text{K)}$$


$$\Psi = -0.058 \, \text{W/(m K)}$$

$$f_{Rsi} = 0.886$$

