CERTIFICATE

Certified Passive House Component ID: 2339bc03 valid until 31. December 2025 Passive House Institute Dr. Wolfgang Feist 64342 Darmstadt GERMANY

Category	Balcony connection
Туре	Cantilevered
Manufacturer	Peikko Group Corporation
	FIN-15101 Lahti
	FINLAND
Product name	EBEA®

This certificate was awarded based on the following criteria for the climate zone

Hygiene and comfort criterion		
The minimum temperature factor of the internal surfaces is	$f_{Rsi=0.25m^2K/W} \geq$	0.86
Energy criterion		
The linear thermal bridge loss coefficient is	Ψ≤	0.25 W/(mK)
Efficiency criterion		
The heat losses depending on the possible load bearing do not exceed	Eff.t. ≤	10.00W/(kNmK)

Tel. +358 20 707 511 | www.peikko.com

Determined values

Product	h [<i>mm</i>]	d [<i>mm</i>]	λ _{,C.min} [<i>W/(mK</i>)]	λ _{,eq} [<i>W/(mK)</i>]	Ψ _{.WB} [W/(mK)]	M _{Rd} [kNm/m]	f _{Rsi} [-]	Eff.t. [<i>W/(kNK)</i>]	Efficiency class
EBEA100_6X10_Q3*	160	120	3.0	0.218	0.211	-23	0.93	9.15	phC
EBEA100_6X10_Q3*	200	120	3.0	0.211	0.250	-34	0.92	7.35	phC
EBEA100_6X10_Q2*	240	120	2.6	0.176	0.244	-45	0.92	5.40	phB

* validated through 3D-FEM-Simulation

$\lambda_{,C.min}$	=	Min. conductivity reinf. Concrete
$\lambda_{,eq}$	=	Equivalent conductivity balcony connection
Ψ <i>,w</i> B	=	Linear thermal bridge coefficient
f _{Rsi}	=	Temperature-factor
Eff.t.	=	Efficiency-value
M _{Rd}	=	Design resistance

Using the equivalent thermal conductivity λ eq, linear thermal bridge loss coefficients can be determined for other connection situations using 2D FEM simulations. The minimum thermal conductivity of the reinforced concrete λ C.min of the balcony is to be used for the cantilever slab and the false ceiling. The rectangular replacement geometry of the balcony connection element has the dimensions of height h and width d, as well as the thermal conductivity λ eq.

λ, _{C.min}	λ _{,eq}	λ, _{C.min}

Notice

The thermal bridge loss coefficients can be interpolated approximately linearly. Calculations and boundary conditions according to the criteria and algorithms "Certified Passive House Component – Balcony Connection, Version 2.1"