
CERTIFICATE

Certified Passive House Component Valid until 31st December 2025 Passive House Institute
Dr. Wolfgang Feist
64283 Darmstadt
Germany

Category: Air handling unit with heat recovery

Manufacturer: Swegon Operations AB

Sweden

Product name: Ventilation unit series

GOLD F RX MPE Sorption

Specification: Airflow rate > 600 m³/h

Heat exchanger: Regenerative

This certificate was awarded based on the product meeting the following main criteria

Heat recovery rate $\eta_{HR} \geq 75 \%$

Specific electric power $P_{\text{el,spec}} \leq 0.45 \text{ Wh/m}^3$

Leakage < 3 %
Performance number ≥ 10

Comfort Supply air temperature ≥ 16.5 °C

at outdoor air temperature of -10 °C 3)

Airflow range

500-14000 m³/h at an external pressure of 243-386 Pa ¹⁾ Requirements non-residential buildings

Heat recovery rate

 $\eta_{HR} \ge 75 \%$

Specific electric power

 $P_{\text{el,spec}} \le 0.45 \text{ Wh/m}^3$

Humidity recovery

 $\eta_x \ge 90 \%^{2}$

Performance number

> 8.5 4)

¹⁾ The pressure drop of filters is covered in the listed external pressure. Additional components (e.g. heating coil) decrease the available external pressure accordingly.

²⁾ For residential use or uses with similar internal moisture sources, it must be possible to reduce moisture recovery.

³⁾ Installation of an additional post heater is necessary.

⁴⁾ The recommended value of 10.0 was not achieved.

Swegon Operations AB

Frejgatan 14, 535 30 Kvänum, Sweden

			Airflow range			ressure	ailable ressure ¹⁾	electric		эсе
Component ID	Unit model	Testing requirements	Min	Max	$\eta_{\rm x}^{-2)}$	External pressure	Actual available external pressure	Specific e power	Ŋнк	Performance number
Comp	Unitr	Testing requirer	m³/h	m³/h	%	Pa	Pa	Wh/m³	%	-
1952vl03	GOLD 04	Non-res.	540	1500	93	247	197	0.45	75	8.6
1953vl03	GOLD 05	Non-res.	540	1400	93	243	202	0.45	76	8.6
1954vl03	GOLD 07	Non-res.	540	1970	93	265	221	0.42	77	9.4
1955vl03	GOLD 08	Non-res.	720	2100	93	271	221	0.43	77	9.2
1956vl03	GOLD 11	Non-res.	720	3000	93	290	236	0.44	77	9.0
1957vl03	GOLD 12	Non-res.	900	3460	93	302	242	0.45	76	8.7
1958vl03	GOLD 14	Non-res.	900	5000	93	322	269	0.44	76	8.9
1959vl03	GOLD 20	Non-res.	1260	5330	93	328	272	0.45	75	8.5
1960vl03	GOLD 25	Non-res.	1260	6580	93	343	299	0.44	76	9.2
1961vl03	GOLD 30	Non-res.	2520	6500	93	338	295	0.45	76	8.6
1962vl03	GOLD 35	Non-res.	2520	9170	93	365	317	0.45	77	8.9
1963vl03	GOLD 40	Non-res.	5400	9000	93	359	312	0.45	77	8.8
1964vl03	GOLD 50	Non-res.	5400	12000	93	376	330	0.45	77	8.7
1965vl03	GOLD 70	Non-res.	7560	14000	93	386	346	0.45	78	8.9

Table 1: Certified values for each unit model.

Humidity recovery

The moisture recovery rate is over 90%. The latent and sensible recovery efficiencies are not entirely independent of one another but regulation of the humidity recovery is to a limited extend possible without significant effect on the sensible recovery.

Moisture recovery during winter can be beneficial in cold and dry climates, but in applications with high and regular moisture loads, such as in residential buildings, humidity recovery at such a high level could be critical, as indoor moisture may not be removed. In general, the use of high humidity recovery systems must be checked on a project-specific basis depending on the climate, building airtightness and internal moisture sources, and under consideration of the respective benefits.

¹⁾ Pressure drop of filters were taken into account.

²⁾ High humidity recovery rates require careful design

Passive House comfort criterion

A supply air temperature of 16.5 °C is maintained at an outdoor air temperature of about -10.0 °C by use of a suitable post-heating element.

Efficiency criterion (heat recovery rate)

The effective heat recovery rate is measured at a test facility using balanced mass flows of the outdoor and exhaust air. The boundary conditions for the measurement are documented in the testing procedure.

$$\eta_{HR} = rac{(heta_{ETA} - heta_{EHA}) + rac{P_{el}}{\dot{m} \cdot c_p}}{(heta_{ETA} - heta_{ODA})}$$

With

 η_{HR} Heat recovery rate in %

 θ_{ETA} Extract air temperature in °C

 θ_{EHA} Exhaust air temperature in °C

 θ_{ODA} Outdoor air temperature in °C

Pel Electric power in W

 \dot{m} Mass flow in kg/h

 c_p Specific heat capacity in Wh/(kg.K)

- The heat recovery rates for each model of the unit are listed in Table 1.
- In residential use, humidity recovery can have a positive effect on the heating demand by increasing the indoor air humidity. These higher humidity levels will reduce evaporation from building elements and furniture during the heating period and thus have a positive effect on the building's heating demand. In order to account for this effect, the heat recovery efficiency is increased by a certain percentage, depending on the achieved level of moisture recovery.

 nh. R. res (table 1) can therefore be applied for residential use.

Airflow range and external pressure difference

The operational range of the device results from the efficiency criterion (see below). As per the certification criteria for ventilation units > 600 m³/h the applicable pressure differences vary with the nominal range of operation (as declared by the producer) and the application (residential or non-residential building).

The external pressure difference includes all pressure losses of the ventilation system caused by components apart from the tested unit (consisting of casing, heat exchanger and fans). If filters are installed inside of the unit, their pressure losses are to be reduced accordingly. The average filter pressure drop of an operational filter is assumed to be 30% higher than that of the clean filter.

 The airflow ranges and available external pressures for each model of the unit are listed in Table 1.

Efficiency criterion (electric power)

The overall electrical power consumption of the device including controllers was measured at the test facility as per the requirements for non-residential buildings at an external pressure difference of 243-386 Pa.

The specific electric powers for each model of the unit are listed in Table 1.

Performance number

Based on the measured values for the calculation of heat recovery efficiency and power consumption and on the climatic data of central Europe (Gt: 84 kKh, heating time: 5400 h/a), an average performance number at the airflow range was determined.

The performance numbers for each model of the unit are listed in Table 1.

Leakage

The airtightness of the unit is tested for under pressure and over pressure before the thermodynamic test is conducted. As per the certification criteria the leakage airflows must not exceed 3 % of the average airflow of the device's operating range.

These appliances meet the airtightness requirements.

Settings and airflow balance

It must be possible to adjust the balance of airflows at the unit itself (either between the exhaust and the outdoor airflows or between the supply and the extract airflows, if the unit is respectively placed inside or outside of the insulated thermal envelope of the building). Availeable operation modes are explained in detail in the operation manual.

- Balancing of the airflow rates of the unit is possible.
 - ✓ The airflow volumes can be held steady automatically (by using the fan inlet pressure based standard flow control function provided in the control)
- The standby power consumption of these devices makes 15 W.
- After a power failure, the device will automatically resume operation.

Acoustical testing

A ventilation unit > 600 m³/h is assumed to be operated in an installation room, for which sound limits are defined in the applicable regulations. The total acoustic power levels were determined by producer for each model of the units at an upper limit of the airflow range.

 For complying with the required sound level in the supply air and extract air rooms, dimensioning of a suitable silencer is required for the specific project on the basis of the measured sound level.

			/ range	Total acoustic power level			
lts					Duct		
Unit model	Testing requirements	Min	Max	Casing	ETA	SUP	
Unit	Testing requirer	m³/h	m³/h	dB(A)	dB(A)	dB(A)	
GOLD 04	Non-residential	540	1500	52	60	74	
GOLD 05	Non-residential	540	1400	50	58	73	
GOLD 07	Non-residential	540	1970	55	63	77	
GOLD 08	Non-residential	720	2100	53	61	76	
GOLD 11	Non-residential	720	3000	57	66	79	
GOLD 12	Non-residential	900	3460	56	64	79	
GOLD 14	Non-residential	900	5000	62	70	84	
GOLD 20	Non-residential	1260	5330	57	65	79	
GOLD 25	Non-residential	1260	6580	60	69	82	
GOLD 30	Non-residential	2520	6500	58	66	80	
GOLD 35	Non-residential	2520	9170	62	70	83	
GOLD 40	Non-residential	5400	9000	60	68	83	
GOLD 50	Non-residential	5400	12000	62	70	83	
GOLD 70	Non-residential	7560	14000	62	70	83	

Tabele 2: Acoustic power levels at an upper limit of the airflow range.

Indoor air quality

This unit is to be equipped with the following filter qualities:

Outdoor air filter	Extract air filter
ISO ePM1 50% (F7)	ISO Coarse 60% (G4)

On the outdoor air side, the filter efficiency of ISO ePM1 50% (F7 according to EN 779) or better is recommended. For the extract air side, a filter efficiency of at least ISO Coarse 60% (G4 according to EN 779) is recommended. If not in standard configuration, the recommended filter is available as an accessory part.

For the operation of ventilation systems a strategy for avoiding permanent moisture penetration of the outdoor air filter needs to be considered. The strategies can be implemented through installation of either an additional component of the ventilation device or on the ventilation site system.

Frost protection

Appropriate measures should be taken to prevent the heat exchanger and optional downstream hydraulic heating coil from freezing damage during extreme winter temperatures (-15 °C). It must be ensured that the unit's ventilation performance is not affected during frost protection cycles.

- Frost protection of the heat exchanger:
 - ✓ This series of ventilation units is equipped with rotor heat exchangers. There is no need for any additional frost protection strategy down to an outdoor air temperature of -15 °C.
- Frost protection of downstream hydraulic heater coils:
 - ✓ As default, this series of ventilation units is supplied with a frost protection function as standard. For this purpose, a temperature sensor must be installed on the supply air side, which is available as a standard unit accessory.

It should be noted that, due to free circulation, cold air can also lead to freezing – even when the fans are stationary. This can only be avoided if the air duct is closed (by means of a shutoff damper).

Bypass of the heat recovery

The heat recovery is regulated by stepless control of the rotation speed of the heat exchanger.