# CERTIFICATE

Certified Passive House Component Component-ID 2080cs02 valid until 31st December 2025 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany

**COMPONENT** Passive House Institute



## Net-Zero Modular Inc. Woodbine Avenue Suite 500 Markham ON L3R 6G2, 7030 Woodbine, Canada ⊠ info@modularpassivhaus.com | <sup>v</sup> https://modularpassivhaus.com

### **Opaque building envelope**

The system is made of a main support layer and wall/roof modules in-between that are connected to the main supports. The main supports are made from steel tubing (120 mm x 120 mm) running vertically on the wall, horizontal over the flat roof, and with the pitch of the roof for a pitched roof.

The modules are formed by a series of steel pro-files (120 mm x 40 mm) running in the same direc-tion as the main supports. Those modules also have a sandwich panel on the outside made from a fibre cement board on the inside and outside with XPS insulation in between. For construction the main supports are first mounted to the existing wall. Then the wall/roof modules are hung between the main supports and connected using a special connecting mechanism

For the floor an insulation layer made from PU-foam boards is placed above the existing floor slab.

For a pitched roof a special connection mechanism is used to connect the main supports of the wall with the main supports of the roof. Then the roof modules are placed on the main supports on the roof and connected using the same connection mechanism. For a flat roof the same procedure is carried out. Here the main support structure is elevated 5 cm above the existing roof to prevent carrying the load to the existing roof structure.

The system is designed to be produced offsite and then carried onto the jobsite module by module. Through this steel construction method retrofits of buildings with multiple stories are possible.

#### Windows

Windows are placed in the insulation layer on the outside surface of the main support layer. For the connection of the window to the main support structure a block of wood is used. For the certification a passive house suitable win-dow was uses. All calculation were carried out using a triple pane wood-aluminum window.



#### **Airtightness concept**





Airtightness is ensured by using the inner fibre cement board of the sandwich panel. The connections of the modules and to the windows are to be sealed with airtight tape.

| Summary of values |         |   |                     |                 |  |  |
|-------------------|---------|---|---------------------|-----------------|--|--|
| Opaque asse       | emblies | ; | U-value<br>W/(m² K) | Thickness<br>mm |  |  |
| exterior<br>wall  | (EW1)   |   | 0.12                | 840             |  |  |
| flat roof         | (FR1)   | _ | 0.11                | 709             |  |  |
| floor slab        | (FS1)   |   | 0.20                | 340             |  |  |
| pitched roof      | (RO1)   |   | 0.09                | 645             |  |  |

| Frame Cuts with "dummy window - cold" from "dummy window manufacturer" (0001) |         |                                           |                                                             |                                                           |                                              |             |  |
|-------------------------------------------------------------------------------|---------|-------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|-------------|--|
| Frame values                                                                  |         | Frame width<br><i>b<sub>f</sub></i><br>mm | <i>U</i> -value frame<br><i>U</i> f<br>W/(m <sup>2</sup> K) | <i>Ψ-</i> glazing edge<br><i>Ψ<sub>g</sub></i><br>W/(m K) | Temp. Factor<br>f <sub>Rsi=0.25</sub><br>[-] |             |  |
| Bottom                                                                        | (OB1)   |                                           | 100                                                         | 0.74                                                      | 0.022                                        | 0.75        |  |
| Тор                                                                           | (OH1)   | T.                                        | 100                                                         | 0.56                                                      | 0.023                                        | 0.77        |  |
| Lateral                                                                       | (OJ1)   | <b>!</b> —                                | 100                                                         | 0.56                                                      | 0.023                                        | 0.77        |  |
| Threshold                                                                     | (OT1)   | 4                                         | 100                                                         | 0.98                                                      | 0.026                                        | 0.70        |  |
| Spac                                                                          | er: Sup | er Spac                                   | er TriSeal / T-Space                                        | r Premium Plus                                            | Secondary                                    | seal: Butyl |  |

| Junctions                                                           |          | U1 U2 U3       | $\Psi$ -value<br>$\Psi$ | Temp. factor<br>f <sub>Rsi=0.25</sub> |
|---------------------------------------------------------------------|----------|----------------|-------------------------|---------------------------------------|
|                                                                     |          | ₩/(m=ĸ)        | W/(MK)                  | [-]                                   |
| Ceiling integration<br>into exterior wall<br>(EW1_EW1_CE_1)         |          | 0.12 0.12      | 0.001                   | 0.971                                 |
| Exterior corner<br>exterior wall<br>(EW1_EW1_ec_1)                  | Г        | 0.12 0.12      | -0.072                  | 0.922                                 |
| Interior corner<br>exterior wall<br>(EW1_EW1_ic_1)                  | -        | 0.12 0.12      | 0.318                   | 0.971                                 |
| Panel joint<br>exterior wall<br>(EW1_EW1_pj_1)                      |          | 0.12 0.12      | 0.000                   | 0.985                                 |
| Roof parapet<br>flat roof<br>(EW1_FR1_rp_1)                         | F-       | 0.12 0.11      | -0.058                  | 0.943                                 |
| Window bottom<br>operable window in exterior<br>wall<br>(EW1_OB1_1) |          | 0.12 0.74      | 0.045                   | 0.808                                 |
| Window head<br>operable window in exterior<br>wall<br>(EW1_OH1_1)   | Ļ        | 0.12 0.56      | 0.004                   | 0.850                                 |
| Window jamb<br>operable window in exterior<br>wall<br>(EW1_OJ1_1)   | <b>-</b> | 0.12 0.56      | 0.004                   | 0.850                                 |
| Roof eave<br>pitched roof<br>(EW1_RO1_ea_1)                         |          | 0.12 0.09      | -0.029                  | 0.958                                 |
| Roof verge<br>pitched roof<br>(EW1_RO1_ve_1)                        | Г        | 0.12 0.09      | -0.071                  | 0.947                                 |
| Panel joint<br>flat roof<br>(FR1_FR1_pj_1)                          |          | 0.11 0.11      | -0.002                  | 0.986                                 |
| Threshold<br>to floor slab<br>(FS1_EW1_OT1_1)                       |          | 0.20 0.12 0.98 | -0.162                  | 0.759                                 |
| Exterior wall plinth<br>on floor slab<br>(FS1_EW1_1)                | -        | 0.20 0.12      | 0.024                   | 0.782                                 |
| Exterior wall plinth<br>on floor slab<br>(FS1_EW1_2)                | L.       | 0.20 0.12      | 0.054                   | 0.784                                 |
| Exterior wall plinth<br>on floor slab<br>(FS1_EW1_2)                | L        | 0.20 0.12      | 0.060                   | 0.772                                 |
| Panel joint<br>pitched roof<br>(R01_R01_pj_1)                       |          | 0.09 0.09      | 0.000                   | 0.978                                 |

| Junctions                                    | U1 U2 U3<br>W/(m <sup>2</sup> K) | $\Psi$ -value $\Psi$ W/(m K) | Temp. factor<br>f <sub>Rsi=0.25</sub><br>[-] |
|----------------------------------------------|----------------------------------|------------------------------|----------------------------------------------|
| Roof ridge<br>pitched roof<br>(RO1_RO1_ri_1) | 0.09 0.09                        | -0.037                       | 0.953                                        |

Component-ID: 2080cs02

## Opaque Assemblies

| ovtorior well | Material                                                            | Lambda W/(m K)                                         | Thickness (mm) |
|---------------|---------------------------------------------------------------------|--------------------------------------------------------|----------------|
|               | fibre-cement board                                                  | 0.350                                                  | 12             |
|               | Insulation 040                                                      | 0.040                                                  | 300            |
|               | fibre-cement board                                                  | 0.350                                                  | 12             |
|               | Insulation 040                                                      | 0.040                                                  | 1              |
|               | eq_insulation_steel profile exterior wall Net-Zero re<br>rofit cold | 0.789                                                  | 120            |
|               | cement mortar/plaster, sand                                         | 1.000                                                  | 15             |
|               | Old masonry wall 1400 kg/m <sup>3</sup>                             | 0.650                                                  | 365            |
|               | gypsum plaster (interior plaster)                                   | 0.570                                                  | 15             |
|               |                                                                     | Total thickness: 840 m<br>Rsi: 0.13 m <sup>2</sup> K/W | Im             |
|               |                                                                     | Rse: 0.04 m <sup>2</sup> K/W                           |                |
|               |                                                                     | U-value: 0.12 W/(m <sup>2</sup> K                      | ()             |
|               |                                                                     |                                                        |                |
|               |                                                                     |                                                        |                |
|               |                                                                     |                                                        |                |
|               |                                                                     |                                                        |                |
|               |                                                                     |                                                        |                |

|  | flat roof (FR1) | Material                                            | Lambda W/(m K)                    | Thickness (mm) |
|--|-----------------|-----------------------------------------------------|-----------------------------------|----------------|
|  |                 | fibre-cement board                                  | 0.350                             | 12             |
|  |                 | Insulation 040                                      | 0.040                             | 300            |
|  |                 | fibre-cement board                                  | 0.350                             | 12             |
|  |                 | EQ flat roof I air - steel I Net-Zero retrofit cold | 0.862                             | 120            |
|  |                 | Insulation 040                                      | 0.040                             | 50             |
|  |                 | cement mortar/plaster, sand                         | 1.000                             | 15             |
|  |                 | concrete (1 % steel)                                | 2.300                             | 180            |
|  |                 | gypsum plaster (interior plaster)                   | 0.570                             | 20             |
|  |                 |                                                     | Total thickness: 709 m            | ım             |
|  |                 |                                                     | Rsi: 0.10 m <sup>2</sup> K/W      |                |
|  |                 |                                                     | Rse: 0.04 m <sup>2</sup> K/W      |                |
|  |                 |                                                     | U-value: 0.11 W/(m <sup>2</sup> k | ()             |
|  |                 |                                                     | ,                                 | ,              |
|  |                 |                                                     |                                   |                |
|  |                 |                                                     |                                   |                |
|  |                 |                                                     |                                   |                |

|  | floor clob rea  | Material             | Lambda W/(m K) Thick               | (ness (mm) |
|--|-----------------|----------------------|------------------------------------|------------|
|  | HOUL SIAD (FS1) | cement screet        | 1.400                              | 60         |
|  |                 | PU-foam 027          | 0.027                              | 130        |
|  |                 | concrete (1 % steel) | 2.300                              | 150        |
|  |                 |                      | Total thickness: 340 mm            |            |
|  |                 |                      | Rsi: 0.17 m <sup>2</sup> K/W       |            |
|  |                 |                      | Rse: - m <sup>2</sup> K/W          |            |
|  |                 | I                    | U-value: 0.20 W/(m <sup>2</sup> K) |            |

|  | nitched roof       | Material                                                             | Lambda W/(m K)                                         | Thickness (mm) |
|--|--------------------|----------------------------------------------------------------------|--------------------------------------------------------|----------------|
|  | pitched root (RO1) | fibre-cement board                                                   | 0.350                                                  | 12             |
|  |                    | Insulation 040                                                       | 0.040                                                  | 300            |
|  |                    | fibre-cement board                                                   | 0.350                                                  | 12             |
|  |                    | Insulation 040                                                       | 0.040                                                  | 1              |
|  |                    | EQ_pitched_roof_new I air - steel I Net-Zero retro<br>cold           | 0.863                                                  | 120            |
|  |                    | softwood, OSB – perpendicular to grain direction                     | 0.130                                                  | 20             |
|  |                    | EQ_pitched_roof_old I mineral wool - wood I Ne<br>Zero retrofit cold | 0.053                                                  | 160            |
|  |                    | softwood, OSB – perpendicular to grain direction                     | 0.130                                                  | 20             |
|  |                    |                                                                      | Total thickness: 645 m<br>Rsi: 0.10 m <sup>2</sup> K/W | าท             |
|  |                    |                                                                      | Rse: 0.04 m <sup>2</sup> K/W                           |                |
|  |                    |                                                                      | U-value: 0.09 W/(m <sup>2</sup> k                      | <)             |



#### Junctions



www.passivehouse.com



Passivhaus retrofit system

12/15







Disclaimer: The Passive House Institute GmbH (PHI) carries out heat transfer analyses according to the standards set out in the document "Criteria and Algorithms for Certified Passive House Components: Opaque Construction Systems" and based on information provided by the manufacturer. It is the responsibility of the project leader, e.g. the architect to ensure the appropriate assessments have been carried out for specific buildings, which may include more detailed analyses than those carried out for this certification. Use of a certified Passive House component does not guarantee that a construction project will achieve the Passive House, EnerPHit or PHI Low Energy Building standard. In all cases full details are to be made available by the manufacturer on request to the engaged certified Passive House designer or certifier, who will be permitted to check these against the construction information and to perform on-site checks as part of the quality assurance process.