
Komponenten-ID 2305cw03 gültig bis 31. Dezember 2025

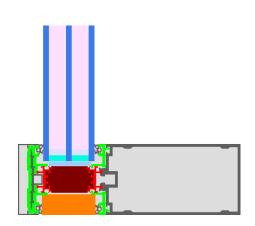
Passivhaus Institut Dr. Wolfgang Feist 64283 Darmstadt Deutschland

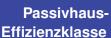
Kategorie: **Pfosten-Riegel-Fassade**

Hersteller: Hebei Aoyee New Materials Co. Ltd.,

Shijiazhuang,

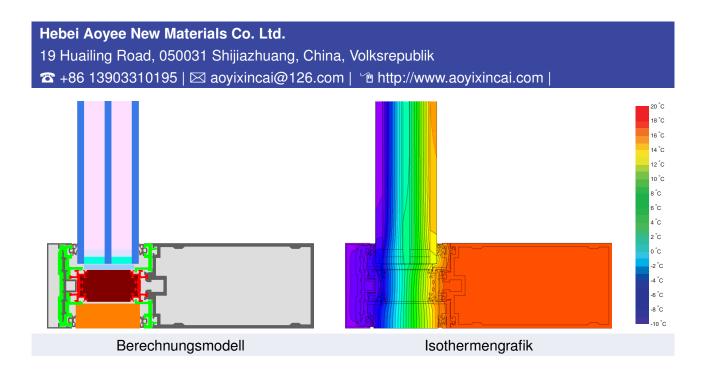
China, Volksrepublik


Produktname: MQ150


Folgende Kriterien für die kühl-gemäßigte Klimazone wurden geprüft

Behaglichkeit U_{CW} = 0,79 \leq 0,80 W/(m² K)

 $U_{CW,\text{eingebaut}} \leq 0.85 \text{ W/(m}^2 \text{ K)}$ mit $U_g = 0.70 \text{ W/(m}^2 \text{ K)}$


Hygiene $f_{Rsi=0,25}$ \geq 0,70

kühl-gemäßigtes Klima

Beschreibung

Vorhangfassade aus Aluminium und PVC mit einer Breite von 75 mm, thermisch getrennt mit einer Kombination aus Polyurethan-Hartschaum (0,051 W/(mK)) und PA66 (25% Glasfaser) (0,30 W/(mK)). Der Glasfalz ist mit PE-Schaum (0,038 W/(mK)) gedämmt. Abstandhalter: TGI SP16 mit Butyl-Sekundärdichtung. Da die thermische Trennung gleichzeitig als Glasträger funktioniert, wird der Chi-Wert des Glasträgers auf Null gesetzt. Glassstärke: 54 mm (6/18/6/18/6), Glaseinstand: 18 mm.

Erläuterungen

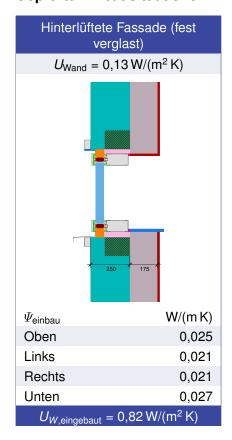
Die Element-U-Werte wurden für die Prüffenstergröße von 1,20 m \times 2,50 m bei U_g = 0,70 W/(m² K) berechnet. Werden höherwertige Verglasungen eingesetzt, verbessern sich die Element-U-Werte wie folgt:

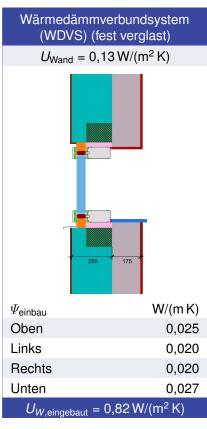
Verglasung
$$U_g = \begin{array}{cccccc} 0.70 & 0.64 & 0.58 & 0.52 & \text{W/(m}^2\,\text{K)} \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \text{Element} & U_{CW} & 0.79 & 0.73 & 0.68 & 0.62 & \text{W/(m}^2\,\text{K)} \end{array}$$

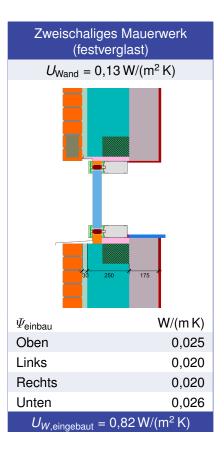
Transparente Bauteile werden abhängig von den Wärmeverlusten durch den opaken Teil in Effizienzklassen eingestuft. In diese Wärmeverluste gehen die Rahmen-U-Werte, die Rahmenbreiten, Glasrand und die Glasrandlängen ein. Ein ausführlicher Bericht über die im Rahmen der Zertifizierung durchgeführten Berechnungen ist beim Hersteller erhältlich.

Das Passivhaus Institut hat weltweite Komponentenanforderungen für sieben Klimazonen definiert. Grundsätzlich können Komponenten, die für Klimazonen mit höheren Anforderungen in Klimazonen mit geringeren Anforderung eingesetzt werden. Es kann wirtschaftlich sinvoll sein, in einer Klimazone eine thermisch höherwertige Komponente, die für eine Klimazone mit strengeren Anforderungen zertifiziert wurde, einzusetzen.

Weitere Informationen zur Zertifizierung sind unter www.passiv.de und www.passipedia.de verfügbar.


2/4 MQ150


Rahmen-Kennwerte			Rahmenbreite <i>b_f</i> mm	Rahmen- <i>U</i> -Wert <i>U_f</i> ¹ W/(m ² K)	Glasrand- Ψ -Wert Ψ_g W/(m K)	Temperaturfaktor f _{Rsi=0,25} [-]
Pfosten fest	(0M1)	-	75	0,85	0,031	0,80
Riegel fest	(0T1)	•	75	0,84	0,030	0,78
Pfosten 1 Flügel	(1M1)	1	177	1,25	0,027	0,78
Riegel 1 Flügel	(1T1)	*	178	1,28	0,026	0,76
Unten fest	(FB1)	Ţ	75	0,86	0,031	0,79
Oben fest	(FH1)	T	75	0,86	0,031	0,79
Seitlich fest	(FJ1)		75	0,85	0,031	0,79
	Abstar	Abstandhalter: Technoform-Spacer SP16			Sekundärdichtung: Butyl	


Glasträger-Wärmebrücke $^2 X_{GT} = 0,000 \, \text{W/K}$

 $^{^1} Enth \ddot{a} lt \Delta U = 0,16 \, W/(m^2 \, K).$ Ermittelt durch 3D-Wärmestromsimulation $^2 Standardwert.$ Glasträger-Typ: Kunststoff

Geprüfte Einbausituationen

