Certificate

Certified Passive House component for cool, temperate climate, valid until 31.12.2025

Category: Manufacturer:

Product name:

Facade anchor Slavonia Baubedarf GmbH A-1110 Wien, AUSTRIA SPIDImax

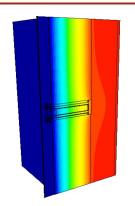
The following criteria were used in awarding this certificate:

Efficiency Criterion

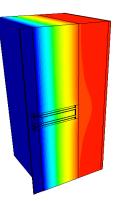
In a typical application*, the construction fulfills the requirements of

Eff.fa ≤ 0.200 W/(kNK)

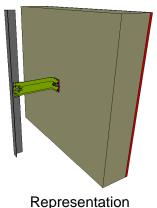
Comfort Criterion


The inner surface must be warm enough to prevent mold as well as uncomfortable down-drafts and radiation losses.

$\theta_{i,min} \geq 17^{\circ}C$


Thermal data of the certified component

SPIDImax	Thermal bridge coefficient	Minimum interior surface temperature		
	χ [W/K]	θ _{i,min} [°C]		
Fixed point 2 mm	0.0112	19.34		
Sliding point 1.5mm	0.0087	19.37		


* The criterion has been validated with a representative facade of a school building Passive House Institute 64283 Darmstadt GERMANY

Isothermal map fixed point

Isothermal map sliding point

2361fa03

Data sheet Slavonia Baubedarf GmbH, SPIDImax

Manufacturer Slavonia Baubedarf GmbH Hauffgasse 3-5, A-1110 Wien, Österreich http://www.slavonia.com/

Criteria validated based on reference facade	ΔU [W/m²K]
SPIDImax	0.0133

In order to validate the suitability, the manufacturer provides a statical calculation and an associated installation plan for the reference facade.

The calculations are carried out for a reference facade with 24 cm insulation (0.035 W/(mK)).

	Energy efficiency	ΔU	Quanti	ty / m²	Loadclass
Туре	[W/(kNK)]	[W/m²K]	FP	SP	[kN/m²]
SPIDImax	0.0416	0.0133	0.61	0.75	0,35
-					
	40 40 40 40 40 10 10 10 10				
				Open <th< th=""><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th></th<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
α α φ φ φ φ φ φ φ φ φ φ φ φ φ	▶	Bass <th< th=""><th>Base Base <th< th=""><th>Base Base <th< th=""><th>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</th></th<></th></th<></th></th<>	Base <th< th=""><th>Base Base <th< th=""><th>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</th></th<></th></th<>	Base <th< th=""><th>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</th></th<>	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩

Installation-plan reference facade of the certified component

Load-class (LC)	Facade cladding	Facade weight [kN/m ²]	Efficiency criterion fulfilled?
I	Aluminium laminated	0.10	yes
Ш	ACM	0.15	yes
III	Fiber-cement plates	0.20	yes
IV	Acrylic glass	0.25	yes
v	Ceramics	0.30	yes
VI	Stone	< 0.32	yes

The classification criteria and the load class allocation can be found in the current criteria "Certified Passive House components – Facade anchors, Version 2.1, 27.05.2021".