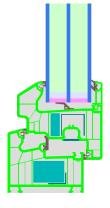
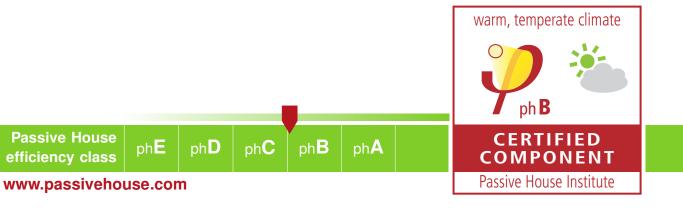
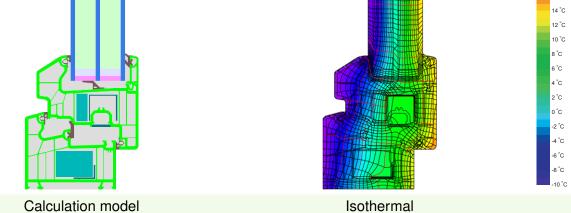

CERTIFICATE

Certified Passive House Component Component-ID 1855wi04 valid until 31st December 2025 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany




Category:	Window Frame
Manufacturer:	Fırat Plastik ve Kauçuk San.Tic.AS., Istanbul, Turkey
Product name:	Elegance 80

This certificate was awarded based on the following criteria for the warm, temperate climate zone


Comfort	$U_W = 0.99$	\leq	1.00 W/(m ² K)
	$U_{W,\text{installed}}$	\leq	1.05 W/(m ² K)
	with U_g	=	0.90 W/(m ² K)

Hygiene $f_{Rsi=0.25}$ \geq 0.65

Description

PVC frame with steel reinforcements and EPS insulation (0,035 W/(mK)). The maximum size of the window with this reinforcement is 1.23 m by 2 m. Pane thickness: 48 mm (4/18/4/18/4), rebate depth: 22 mm.

Explanation

The window U-values were calculated for the test window size of 1.23 m \times 1.48 m with $U_g = 0.90$ W/(m² K). If a higher quality glazing is used, the window U-values will improve as follows:

Glazing	$U_g =$	0.90	0.82	0.74	0.60	$W/(m^2 K)$
		\downarrow	\downarrow	\downarrow	\downarrow	
Window	$U_W =$	0.99	0.93	0.88	0.78	W/(m ² K)

Transparent building components are classified into efficiency classes depending on the heat losses through the opaque part. The frame U-Values, frame widths, thermal bridges at the glazing edge, and the glazing edge lengths are included in these heat losses. A more detailed report of the calculations performed in the context of certification is available from the manufacturer.

The Passive House Institute has defined international component criteria for seven climate zones. In principle, components which have been certified for climate zones with higher requirements may also be used in climates with less stringent requirements. In a particular climate zone it may make sense to use a component of a higher thermal quality which has been certified for a climate zone with more stringent requirements.

Further information relating to certification can be found on www.passivehouse.com and passipedia.org.

18 °C 16 °C

Validated installations

Formwork blocks (operable)		Lightweight	timber (operable)	Exterior insulation and finishing system (EIFS) (operable)	
$U_{\text{Wall}} = 0.25 \text{W}$	/(m ² K)	$U_{Wall} = 0$	0.25 W/(m ² K)	$U_{\text{Wall}} = 0$	0.23 W/(m ² K)
Exterior plaster EPS 0.035 W/C Interior plaster Interior plaster	mK) //mK) mK) 0.57 W/(mK)	Wood Cellul OSB- Insula	ior plaster 1.0 W/(mK) fibre board 0.050 W/(mK) ose 0.040 W/(mK) board 0.15 W/(mK) erboard 0.25 W/(mK)		Exterior plaster 1.0 W/(mK) EPS 0.035 W/(mK) Adhesive 0.70 W/(mK) Sand-lime brick 1.0 W/(mK) Interior plaster 0.57 W/(mK) Suitable fastening, e.g. mounting frame or bracket, but only protruding as far as necessary for 15
$\Psi_{install}$	W/(mK)	$\Psi_{install}$	W/(m K)	$\Psi_{install}$	W/(m K)
Тор	0.004	Тор	0.005	Тор	0.000
Side	0.004	Side	0.005	Side	0.000
Bottom	0.021	Bottom	0.022	Bottom	0.017
$U_{W,\text{installed}} = 1.01$	W/(m ² K)	U _{W,installed} =	= 1.01 W/(m ² K)	U _{W,installed}	= 1.00 W/(m ² K)

Frame values	5		Frame width <i>b_f</i> mm	<i>U</i> -value frame <i>U</i> f W/(m ² K)	$arPsi$ -glazing edge $arPsi_g$ W/(m K)	Temp. Factor f _{Rsi=0.25} [-]	
Flying Mul- lion	(FM1)	1	140	0.97	0.027	0.69	
Bottom	(OB1)	4	118	0.97	0.027	0.71	
Тор	(OH1)	ſ	118	0.97	0.027	0.71	
Lateral	(OJ1)	<u>11</u>	118	0.97	0.027	0.71	
	Spacer: SWISSPACER ULTIMATE			E Sec	Secondary seal: Polysulfide		

www.passivehouse.com