

Certificate

Certified Passive House component

for cool, temperate climate, valid until 31.12.2025

Category: Facade anchor

Manufacturer: Ash & Lacy

West Bromwich, UNITED KINGDOM

Product name: AxiAL AXR System

The following criteria were used in awarding this certificate:

Efficiency Criterion

In a typical application*, the construction fulfills the requirements of

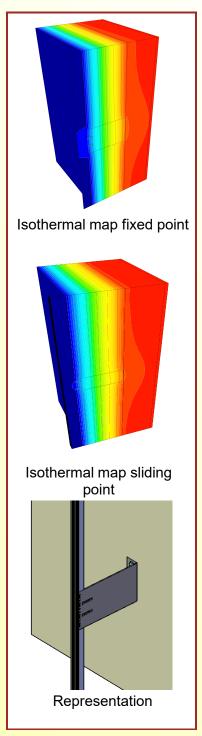
Eff.fa \leq 0.200 W/(kNK)

Comfort Criterion

The inner surface must be warm enough to prevent mold as well as uncomfortable down-drafts and radiation losses.

 $\theta_{i,min} \geq 17^{\circ}C$

Thermal data of the certified component


Product name	Thermal bridge coefficient	Minimum interior surface temperature	
	χ [W/K]	θ _{i,min} [°C]	
Fixed point	0.0241	19.02	
Sliding point	0.0123	19.07	

* The criterion has been validated with a representative facade of a school building

www.passivehouse.com

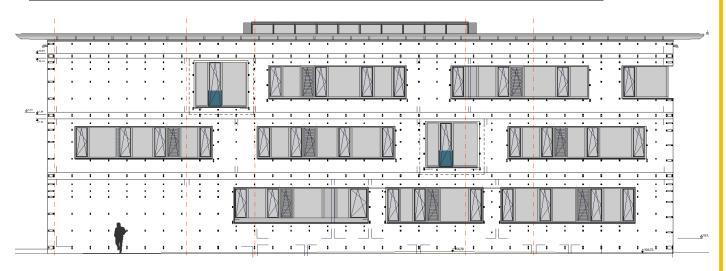
2045fa03

Passive House Institute 64283 Darmstadt GERMANY

Data sheet Ash & Lacy, AxiAL AXR System

Manufacturer Ash & Lacy

Bromford Lane, B70 7JJ West Bromwich


www.ashandlacy.com

Criteria validated based on reference facade	Δ _U [W/m²K]
LC I	0.0197
LC II	0.0288
LC III - VI	0.0368

In order to validate the suitability, the manufacturer provides a statical calculation and an associated installation plan for the reference facade.

The calculations are carried out for a reference facade with 24 cm insulation (0.035 W/(mK)). To achieve a heat transfer coefficient of $U_{\text{effective}}$ = 0.15 W / m²K, an additional insulation thickness of 1 cm becomes necessary.

Load class	Efficiency	ΔU	Quanti	ty / m²
LC	[W/(kNK)]	[W/m²K]	SP	FP
I	0.1970	0.0197	0.37	0.88
II	0.1922	0.0288	0.53	1.31
V	0.1233	0.0370	0.85	1.35
VI	0.0660	0.0370	0.85	1.35

Installation-plan reference facade of the certified component (LC II)

Load-class (LC)	Facade cladding	Facade weight [kN/m²]	Efficiency criterion fulfilled?
1	Aluminium	0.10	yes
II	ACM	0.15	yes
III	Fiber-cement plates	0.20	yes
IV	Acrylic glass	0.25	yes
V	Ceramics	0.30	yes
VI	Brick-slip	0.56	yes

The classification criteria and the load class allocation can be found in the current criteria

[&]quot;Certified Passive House components - Facade anchors, Version 2.1, 27.05.2021".