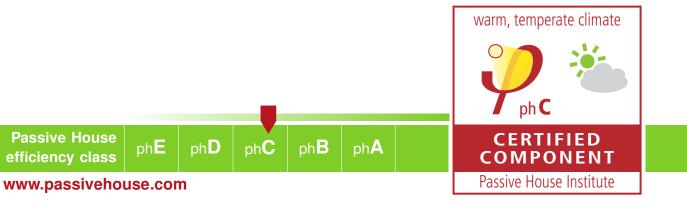
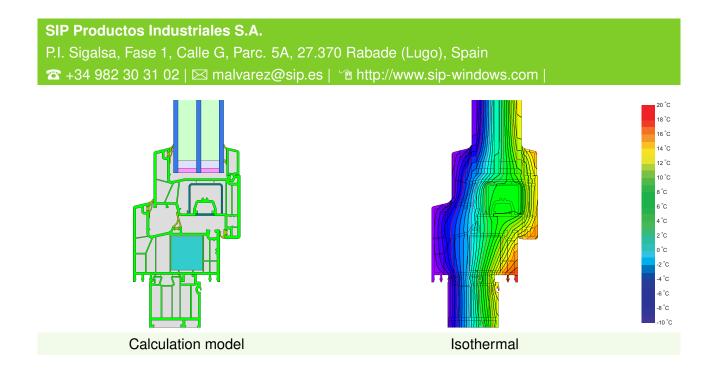

CERTIFICATE

Certified Passive House Component Component-ID 2125wi04 valid until 31st December 2025 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany


Category:	Window Frame
Manufacturer:	SIP Productos Industriales S.A.,
	Rabade (Lugo),
	Spain
Product name:	greenEvolution MD


This certificate was awarded based on the following criteria for the warm, temperate climate zone

Comfort	<i>U</i> _W = 1.00	\leq	1.00 W/(m ² K)
	$U_{W,\text{installed}}$	\leq	1.05 W/(m ² K)
	with U_g	=	$0.90 W/(m^2 K)$

Hygiene $f_{Rsi=0.25}$ \geq 0.65

Description

PVC frame with steel reinforcement in the sash. Maximum size according to the size table in the technical documents. Insulation insert made of recyclable structural foam (0.042 W/(mK)) in the frame. Pane thickness: 44 mm (4/16/4/16/4), rebate depth: 22 mm.

Explanation

The window U-values were calculated for the test window size of 1.23 m \times 1.48 m with $U_g = 0.90$ W/(m² K). If a higher quality glazing is used, the window U-values will improve as follows:

Glazing	$U_g =$	0.90	0.70	0.68	0.64	$W/(m^2 K)$
		\downarrow	\downarrow	\downarrow	\downarrow	
Window	$U_W =$	1.00	0.87	0.86	0.83	W/(m ² K)

Transparent building components are classified into efficiency classes depending on the heat losses through the opaque part. The frame U-Values, frame widths, thermal bridges at the glazing edge, and the glazing edge lengths are included in these heat losses. A more detailed report of the calculations performed in the context of certification is available from the manufacturer.

The Passive House Institute has defined international component criteria for seven climate zones. In principle, components which have been certified for climate zones with higher requirements may also be used in climates with less stringent requirements. In a particular climate zone it may make sense to use a component of a higher thermal quality which has been certified for a climate zone with more stringent requirements.

Further information relating to certification can be found on www.passivehouse.com and passipedia.org.

Validated installations

Lightweight tim	ıber (operable)	Ventila	ted facade		lation and finishing EIFS) (operable)
$U_{Wall} = 0.18 W/(m^2 K)$		$U_{Wall} = 0.22 W/(m^2 K)$		$U_{\text{Wall}} = 0.23 \text{W}/(\text{m}^2 \text{K})$	
Wood fil Cellulose OSB-bo Insulatic	plaster 1.0 W/(mK) bre board 0.050 W/(mK) e 0.040 W/(mK) an 0.040 W/(mK) ooard 0.25 W/(mK)		Ventilated facade — substructure Vineral wool 0.035 W/(mK) Cancrete 2.3 W/(mK) nterior plaster 0.57 W/(mK) Suitable fastening, e.g. mounting frame or bracket, but only orotruding as far as necessary for fixing the window		Exterior plaster 1.0 W/(mK) EPS 0.035 W/(mK) Adhesive 0.70 W/(mK) Sand-lime brick 1.0 W/(mK) Interior plaster 0.57 W/(mK) Suitable fastening, e.g. mounting frame or bracket, but only protruding as far as necessary for fixing the window
$\Psi_{ m install}$	W/(mK)	$\Psi_{ m install}$	W/(m K)	$\Psi_{\rm install}$	W/(m K)
Тор	0.015	Тор	0.004	Тор	0.003
Side	0.015	Side	0.004	Side	0.003
Bottom	0.018	Bottom	0.023	Bottom	0.022
$U_{W,\text{installed}} = 1$.05 W/(m ² K)	U _{W,installed} =	= 1.03 W/(m ² K)	U _{W,installed}	$= 1.03 W/(m^2 K)$

Frame value	S		Frame width <i>b_f</i> mm	<i>U</i> -value frame <i>U</i> f W/(m ² K)	$arPsi$ -glazing edge $arPsi_g$ W/(m K)	Temp. Factor f _{Rsi=0.25} [-]
Mullion 2 casements	(2M1)	-1-	186	1.12	0.025	0.69
Bottom	(OB1)	4	158	1.12	0.025	0.72
Тор	(OH1)	T	118	0.99	0.025	0.72
Lateral	(OJ1)	<u>11</u>	118	0.99	0.025	0.72
	Spac	cer: SWI	SSPACER ULTIMAT	E Sec	ondary seal: Polysulf	ide

www.passivehouse.com