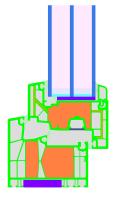
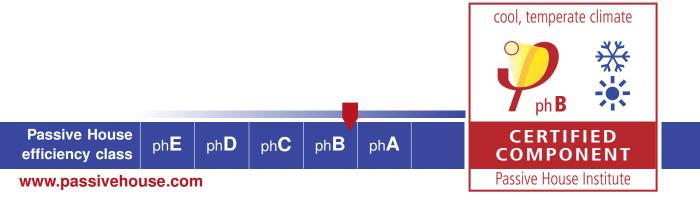
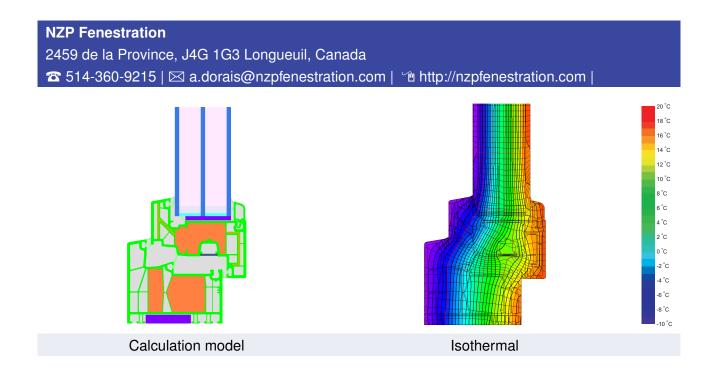

CERTIFICATE

Certified Passive House Component Component-ID 2328wi03 valid until 31st December 2025 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany




Category:	Window Frame
Manufacturer:	NZP Fenestration,
	Longueuil,
	Canada
Product name:	PassivCanada Cool operable


This certificate was awarded based on the following criteria for the cool, temperate climate zone

Comfort	$U_W = 0.77$	\leq	0.80 W/(m ² K)
	$U_{W,\text{installed}}$	\leq	$0.85 W/(m^2 K)$
	with U_g	=	$0.70 W/(m^2 K)$

Hygiene $f_{Rsi=0.25}$ \geq 0.70

Description

PVC frame with Ultradur reinforcement in the sash. Walltite insulation (0.034 W/(mK)) inside the cavities. Secondary seal in accordance with supplier data sheet, max. size 1.30 m x 1.70 m (white) or up to 1.00 m width in standard colors (see static table) in technical documents. Pane thickness: 52 mm (4/20/4/20/4), glass inset: 15 mm. Secondary sealant in accordance to technical documents

Explanation

The window U-values were calculated for the test window size of 1.23 m \times 1.48 m with $U_g = 0.70$ W/(m² K). If a higher quality glazing is used, the window U-values will improve as follows:

Glazing	$U_g =$	0.70	0.64	0.58	0.54	W/(m ² K)
		\downarrow	\downarrow	\downarrow	\downarrow	
Window	$U_W =$	0.77	0.72	0.68	0.66	W/(m ² K)

Transparent building components are classified into efficiency classes depending on the heat losses through the opaque part. The frame U-Values, frame widths, thermal bridges at the glazing edge, and the glazing edge lengths are included in these heat losses. A more detailed report of the calculations performed in the context of certification is available from the manufacturer.

The Passive House Institute has defined international component criteria for seven climate zones. In principle, components which have been certified for climate zones with higher requirements may also be used in climates with less stringent requirements. In a particular climate zone it may make sense to use a component of a higher thermal quality which has been certified for a climate zone with more stringent requirements.

Further information relating to certification can be found on www.passivehouse.com and passipedia.org.

Validated installations

Lightweight tim	ber (operable)	Solid tir	nber (operable)		llation and finishing EIFS) (operable)
$U_{\text{Wall}} = 0.14$	4 W/(m² K)	$U_{Wall} =$	0.14 W/(m ² K)	$U_{\rm Wall} =$	0.13 W/(m ² K)
			<pre> the section of the section</pre>		
$\Psi_{install}$	W/(m K)	$\Psi_{install}$	W/(m K)	$\Psi_{install}$	W/(m K)
Тор	0.017	Тор	0.020	Тор	0.010
Side	0.011	Side	0.014	Side	0.010
Bottom	0.015	Bottom	0.013	Bottom	0.014
$U_{W,\text{installed}} = 0.81 \text{ W/(m}^2 \text{ K)}$		$U_{W,\text{installed}} = 0.81 \text{ W/(m}^2 \text{ K)}$		$U_{W,\text{installed}} = 0.80 \text{ W/(m}^2 \text{ K)}$	

Frame value	es		Frame width <i>b_f</i> mm	<i>U</i> -value frame <i>U</i> f W/(m ² K)	$arPsi_{-}$ glazing edge $arPsi_{g}$ W/(m K)	Temp. Factor f _{Rsi=0.25} [-]
Mullion 1 casement	(1M1)	7	136	0.73	0.022	0.75
Mullion 2 casements	(2M1)	-1-	174	0.81	0.022	0.79
Bottom	(OB1)		116	0.76	0.019	0.80
Тор	(OH1)	T.	116	0.76	0.019	0.80
Lateral	(OJ1)	<u>1</u>	116	0.76	0.019	0.80
Spacer: SWISSPACER ULTIMATE Secondary seal: Hotmelt Butyl						Butyl

www.passivehouse.com