
CERTIFICATE

Certified Passive House Component ID: 1451bc03 valid until 31. December 2025 Passive House Institute Dr. Wolfgang Feist 64342 Darmstadt GERMANY

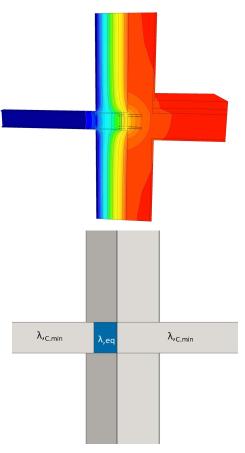
Category	Balcony connection
Туре	Cantilevered
Manufacturer	Farrat Isolevel Limited
	WA15 8HJ Altrincham
	United Kingdom
Product name	FARRAT TBK & TBF

This certificate was awarded based on the following criteria for the climate zone

Hygiene and comfort criterion The minimum temperature factor of the internal surfaces is	f _{Rsi=0.25m²K/W} ≥	0.86
Energy criterion The linear thermal bridge loss coefficient is	Ψ≤	0.25 W/(mK)
Efficiency criterion The heat losses depending on the possible load bearing do not exceed	Eff.t. ≤	10.00 W/(kNmK)

Farrat Isolevel Limited

Balmoral Road WA15 8HJ Altrincham United Kingdom +44 161 924 1600 | http://www.farrat.com/


Determined values

Product	h [mm]	d [mm]	λ _{,c.min} [W/(mK)]	λ _{,eq} [W/(mK)]	Ψ _{,wв} [W/(mK)]	m _{Rd,y} [kNm/m]	f _{Rsi} [-]	Eff.t. [W/(kNmK)]	Efficiency - class
TBK with IPE 140 - Distance 2 m	140	25	-	-	0.0650	-35.00	0.96	1.9	phA+
TBK with IPE 140 - Distance 1.5 m	140	25	-	-	0.0867	-35.00	0.96	2.5	phA
TBK with IPE 140 - Distance 1 m	140	25	-	-	0.1300	-35.00	0.96	3.7	phB
TBF with IPE 140 - Distance 2 m	140	25	-	-	0.0651	-35.00	0.95	1.9	phA+
TBF with IPE 140 - Distance 1.5 m	140	25	-	-	0.0868	-35.00	0.95	2.5	phA
TBF with IPE 140 - Distance 1 m	140	25	-	-	0.1301	-35.00	0.95	3.7	phB

All thermal properties have been determined through a 3D-FEM Simulation. The simulation model consists of an IPE 140 beam, with a head-plate, the TBF/TBK thermal separation element (25 mm) and a 25 mm stainless steel plate. The determination of linear thermal bridges is dependent on the distance between the connectors. The punctiform thermal bridge X accounts to 0.1300 W/K for the TBK and 0.1301 W/K for the TBF. These values can be used to determine a linear surcharge, dependent on the distance. A methodology using an equivalent conductivity as a linear element as for linear thermal separations is not recommended here.

$\lambda_{,C.min}$	=	Min. conductivity reinf. Concrete
$\lambda_{,eq}$	=	Equivalent conductivity balcony connection
$\Psi_{,WB}$	=	Linear thermal bridge coefficient
f _{Rsi}	=	Temperature-factor
Eff.t.	=	Efficiency-value
$m_{Rd,y}$	=	Design resistance

Using the equivalent thermal conductivity λ_{eq} , linear thermal bridge loss coefficients can be determined for other connection situations using 2D FEM simulations. The minimum thermal conductivity of the reinforced concrete $\lambda_{C.min}$ of the balcony is to be used for the cantilever slab and the false ceiling. The rectangular replacement geometry of the balcony connection element has the dimensions of height h and width d, as well as the thermal conductivity λ_{eq} .

Notice

The thermal bridge loss coefficients can be interpolated approximately linearly. Calculations and boundary conditions according to the criteria and algorithms "Certified Passive House Component – Balcony Connection, Version 2.1"