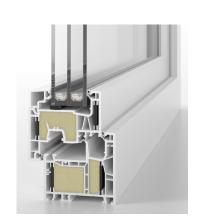

Komponenten-ID 1830ws03 gültig bis 31. Dezember 2025

Passivhaus Institut Dr. Wolfgang Feist 64283 Darmstadt Deutschland

Kategorie: Fenster System Hersteller: aluplast GmbH,

Karlsruhe, Deutschland

Produktname: energeto neo


Folgende Kriterien für die kühl-gemäßigte Klimazone wurden geprüft

Behaglichkeit $U_W = 0.80 \le 0.80 \,\mathrm{W/(m^2\,K)}$

 $U_{W,\text{eingebaut}} \leq 0.85 \text{ W/(m}^2 \text{ K)}$ mit $U_g = 0.70 \text{ W/(m}^2 \text{ K)}$

Hygiene $f_{Rsi=0.25}$ ≥ 0.70

Luftdichtheit $Q_{100} = 0.22 \le 0.25 \,\mathrm{m}^3/(\mathrm{h}\,\mathrm{m})$

aluplast GmbH Auf der Breit 2, 76227 Karlsruhe, Deutschland +49 (0)721 / 47171 0 | Image: Info.de@aluplast.net | Image: Image: Info.de@aluplast.net | Image: I

Beschreibung

Berechnungsmodell

Kunststoff Fensterrahmen mit Dämmung aus EPS-Schaum, 0,031 W/(mK). Rahmenverstärkung aus Polyamid mit 25% Glasfaser (0,30 W/(mK)). Mit der geprüften Kombination sind Flügelgrößen von 1m * 2,25m und bei farbige Profilen 1m * 2,05m möglich. Bei größeren Elementen sind die aluplast GmbH Verarbeitungsrichtlinien zu beachten. Das Taupunktkriterium der Schwelle wird in Verbindung mit der Einbausituation erreicht. Hinweis: Der Temperaturfaktor 0,7 wird an einigen zusätzlichen Mittelprofilen nicht erreicht. Wählen Sie falls erforderlich ein anderes Profil. Glassstärke: 48 mm (4/18/4/18/4), Glaseinstand: 18 mm. Abstandhalter: SWISSPACER Ultimate.

Isothermengrafik

Erläuterung

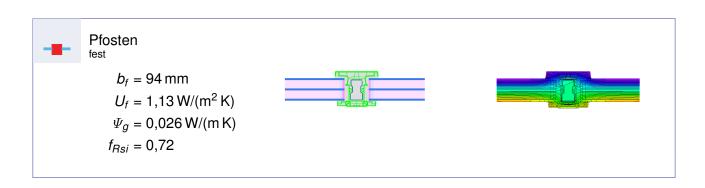
Die Fenster-U-Werte wurden für die Prüffenstergröße von 2,46 m \times 1,48 m bei U_g = 0,70 W/(m² K) berechnet. Werden höherwertige Verglasungen eingesetzt, verbessern sich die Fenster-U-Werte wie folgt:

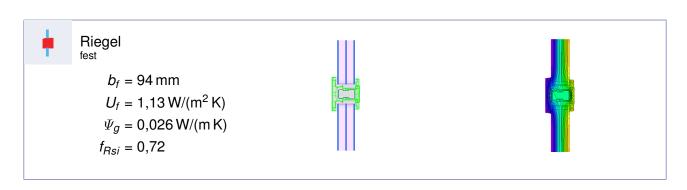
Verglasung	$U_g =$	0,70	0,64	0,58	0,52	W/(m ² K)
		\downarrow	\downarrow	↓	↓	
Fenster	$U_W =$	0,80	0,76	0,72	0,68	W/(m ² K)

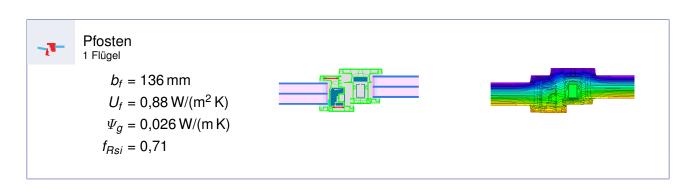
Transparente Bauteile werden abhängig von den Wärmeverlusten durch den opaken Teil in Effizienzklassen eingestuft. In diese Wärmeverluste gehen die Rahmen-U-Werte, die Rahmenbreiten, Glasrand und die Glasrandlängen ein. Ein ausführlicher Bericht über die im Rahmen der Zertifizierung durchgeführten Berechnungen ist beim Hersteller erhältlich.

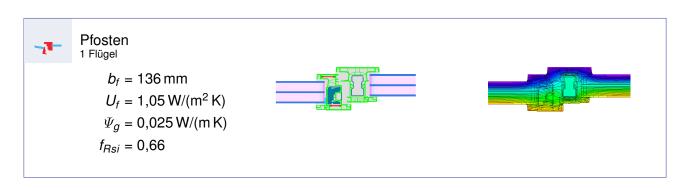
Das Passivhaus Institut hat weltweite Komponentenanforderungen für sieben Klimazonen definiert. Grundsätzlich können Komponenten, die für Klimazonen mit höheren Anforderungen zertifiziert sind, auch in Klimazonen mit geringeren Anforderung eingesetzt werden. Es kann wirtschaftlich sinnvoll sein, in einer Klimazone eine thermisch höherwertige Komponente, die für eine Klimazone mit strengeren Anforderungen zertifiziert wurde, einzusetzen.

Weitere Informationen zur Zertifizierung sind unter www.passiv.de und www.passipedia.de verfügbar.


Rahmen-h	Kennwerte	Э	Rahmenbreite <i>b_f</i> mm	Rahmen- <i>U</i> -Wert <i>U_f</i> W/(m² K)	Glasrand- Ψ -Wert Ψ_g W/(m K)	Temperaturfaktor f _{Rsi=0,25} [-]
Pfosten fest	(0M1)	-	94	1,13	0,026	0,72
Riegel fest	(0T1)	•	94	1,13	0,026	0,72
Pfosten 1 Flügel	(1M1)	7	136	0,88	0,026	0,71
Pfosten 1 Flügel	(1M2)	7	136	1,05	0,025	0,66
Riegel 1 Flügel	(1T1)	4	136	0,88	0,026	0,71
Riegel 1 Flügel	(1T2)	*	137	1,05	0,026	0,66
Pfosten 2 Flügel	(2M1)	1	178	0,89	0,026	0,72
Pfosten 2 Flügel	(2M2)	1	178	0,99	0,026	0,65
Riegel 2 Flügel	(2T1)	4	178	0,89	0,026	0,72
Riegel 2 Flügel	(2T2)	K	178	0,99	0,025	0,65
Ecke	(CO1)	T	316	0,52	0,022	0,74
Unten fest	(FB1)	Ţ	103	0,78	0,026	0,74
Oben fest	(FH1)	T	73	0,70	0,026	0,74
Seitlich fest	(FJ1)	•	73	0,70	0,026	0,74
Stulp	(FM1)	7	138	0,88	0,026	0,71
Stulp	(FM2)	7	138	0,98	0,025	0,65
Unten	(OB1)		145	0,84	0,026	0,72
Oben	(OH1)	F	115	0,82	0,026	0,74
Seitlich	(OJ1)	1	115	0,82	0,026	0,74
	Abstand	halter: S	WISSPACER ULTIM	IATE S	Sekundärdichtung: Po	olysulfid

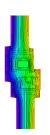

3/12 energeto neo


Rahmen-Kennwerte	Rahmenbreite <i>b_f</i> mm	Rahmen- <i>U</i> -Wert <i>U_f</i> W/(m ² K)	Glasrand- Ψ -Wert Ψ_g W/(m K)	Temperaturfaktor f _{Rsi=0,25} [-]
Schwelle (OT1)	85	1,42	0,026	0,63


Abstandhalter: SWISSPACER ULTIMATE

Sekundärdichtung: Polysulfid

Riegel 1 Flügel

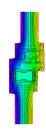

 $b_f = 136 \, \text{mm}$

 $U_f = 0.88 \, \text{W/(m}^2 \, \text{K)}$

 Ψ_g = 0,026 W/(m K)

 $f_{Rsi}=0,71$

Riegel 1 Flügel


 $b_f = 137 \, \text{mm}$

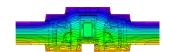
 $U_f = 1,05 \text{ W/(m}^2 \text{ K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0,66$

Pfosten

2 Flügel


 $b_f = 178 \, \text{mm}$

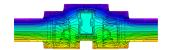
 $U_f = 0.89 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_q = 0.026 \, \text{W/(m K)}$

 $f_{Rsi} = 0.72$

Pfosten

2 Flügel

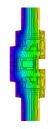

 $b_f = 178 \, \text{mm}$

 $U_f = 0.99 \, \text{W/(m}^2 \, \text{K})$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi} = 0.65$

Riegel 2 Flügel


 $b_f = 178 \, \text{mm}$

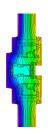
 $U_f = 0.89 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0{,}72$

5/12 energeto neo

Riegel 2 Flügel

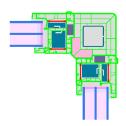

 $b_f = 178 \, \text{mm}$

 $U_f = 0.99 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.025 \, \text{W/(m K)}$

 $f_{Rsi}=0,65$

T

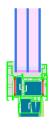

Ecke

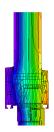

 $b_f = 316 \, \text{mm}$

 $U_f = 0.52 \, \text{W/(m}^2 \, \text{K})$

 Ψ_g = 0,022 W/(m K)

 $f_{Rsi}=0.74$


Unten fest

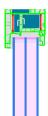

 $b_f = 103 \, \text{mm}$

 $U_f = 0.78 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0.74$

Oben


fest

 $b_f = 73 \,\mathrm{mm}$

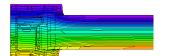
 $U_f = 0.70 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0.74$

Seitlich

fest

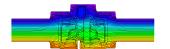

 $b_f = 73 \,\mathrm{mm}$

 $U_f = 0.70 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0.74$

Stulp

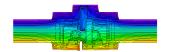

 $b_f = 138 \, \text{mm}$

 $U_f = 0.88 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0.71$

Stulp

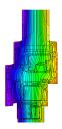

 $b_f = 138 \, \text{mm}$

 $U_f = 0.98 \, \text{W/(m}^2 \, \text{K})$

 $\Psi_g = 0.025 \, \text{W/(m K)}$

 $f_{Rsi}=0,65$

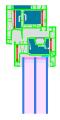
Unten


 $b_f = 145 \, \text{mm}$

 $U_f = 0.84 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0.72$


Oben

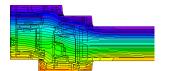
 $b_f = 115 \, \text{mm}$

 $U_f = 0.82 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0.74$

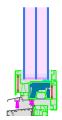
Seitlich

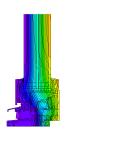

 $b_f = 115 \, \text{mm}$

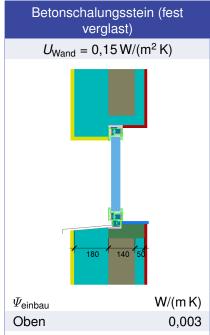
 $U_f = 0.82 \, \text{W/(m}^2 \, \text{K)}$

 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0.74$

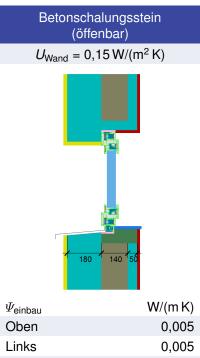

Schwelle

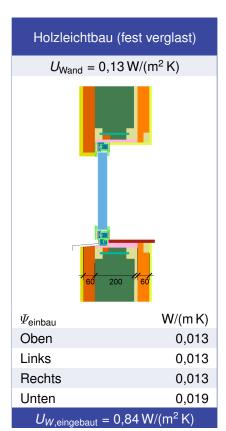

 $b_f = 85 \,\mathrm{mm}$

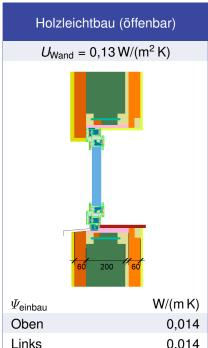

 $U_f = 1,42 \, \text{W/(m}^2 \, \text{K)}$

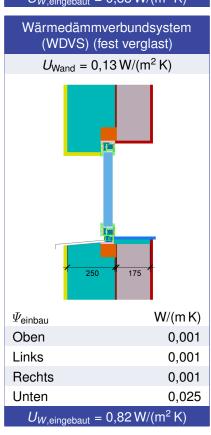
 $\Psi_g = 0.026 \, \text{W/(m K)}$

 $f_{Rsi}=0,63$

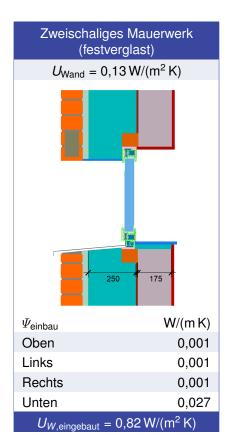


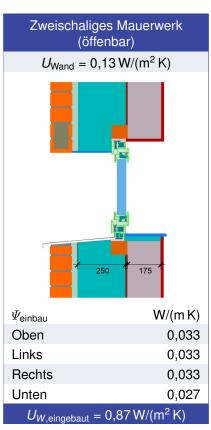

	 2.0
Unten	0,030
Rechts	0,003
Links	0,003

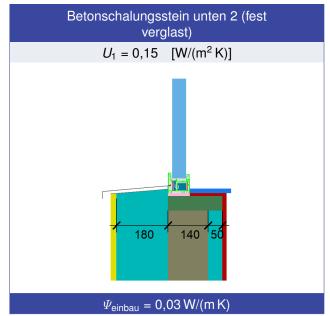

 $U_{W,\text{eingebaut}} = 0.83 \,\text{W/(m}^2 \,\text{K)}$

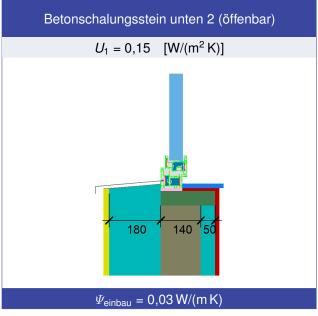

$\Psi_{\sf einbau}$	W/(m K)
Oben	0,005
Links	0,005
Rechts	0,005
Unten	0,030

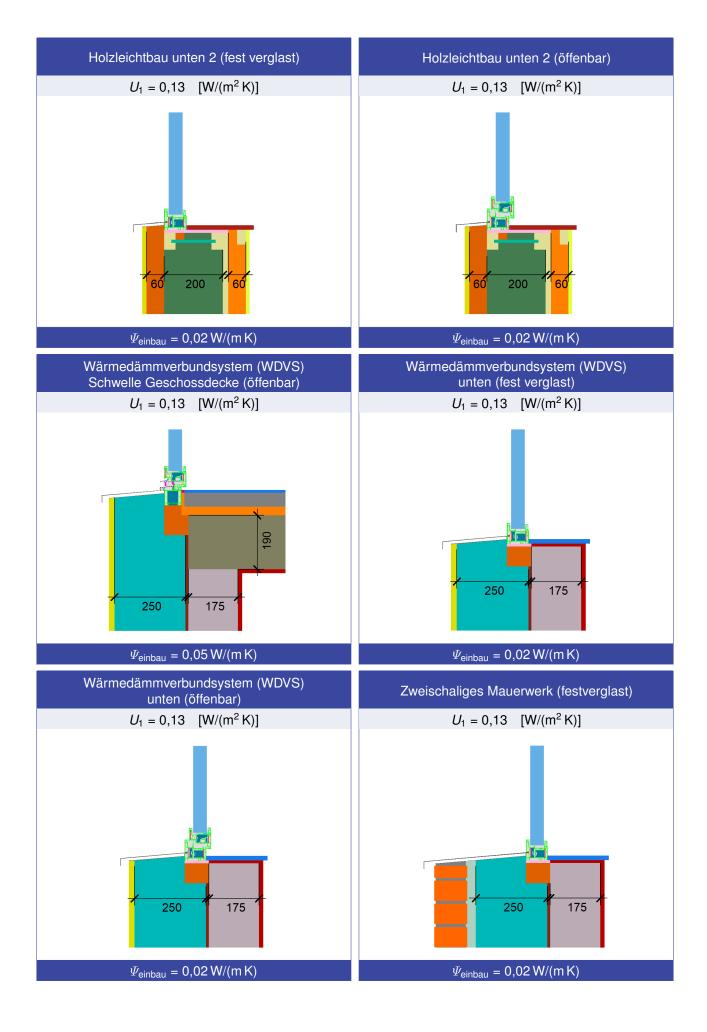
 $\overline{U_{W,\text{eingebaut}}} = 0.83 \,\text{W/(m}^2 \,\text{K})$

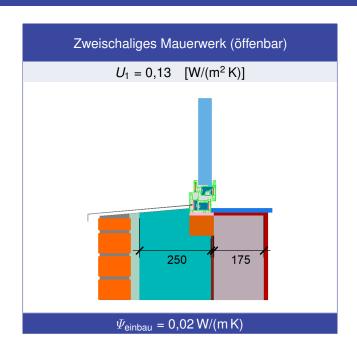



Γ	60 200 60	4		
$\Psi_{\sf einbau}$		W/(mK)		
Oben		0,014		
Links		0,014		
Rechts		0,014		
Unten		0,019		
$U_{W,\text{eingebaut}} = 0.84 \text{W/(m}^2 \text{K)}$				






energeto neo 9/12



11/12 energeto neo

